81 research outputs found

    Machine Learning-Aided Operations and Communications of Unmanned Aerial Vehicles: A Contemporary Survey

    Full text link
    The ongoing amalgamation of UAV and ML techniques is creating a significant synergy and empowering UAVs with unprecedented intelligence and autonomy. This survey aims to provide a timely and comprehensive overview of ML techniques used in UAV operations and communications and identify the potential growth areas and research gaps. We emphasise the four key components of UAV operations and communications to which ML can significantly contribute, namely, perception and feature extraction, feature interpretation and regeneration, trajectory and mission planning, and aerodynamic control and operation. We classify the latest popular ML tools based on their applications to the four components and conduct gap analyses. This survey also takes a step forward by pointing out significant challenges in the upcoming realm of ML-aided automated UAV operations and communications. It is revealed that different ML techniques dominate the applications to the four key modules of UAV operations and communications. While there is an increasing trend of cross-module designs, little effort has been devoted to an end-to-end ML framework, from perception and feature extraction to aerodynamic control and operation. It is also unveiled that the reliability and trust of ML in UAV operations and applications require significant attention before full automation of UAVs and potential cooperation between UAVs and humans come to fruition.Comment: 36 pages, 304 references, 19 Figure

    A Routine and Post-disaster Road Corridor Monitoring Framework for the Increased Resilience of Road Infrastructures

    Get PDF

    A review of task allocation methods for UAVs

    Get PDF
    Unmanned aerial vehicles, can offer solutions to a lot of problems, making it crucial to research more and improve the task allocation methods used. In this survey, the main approaches used for task allocation in applications involving UAVs are presented as well as the most common applications of UAVs that require the application of task allocation methods. They are followed by the categories of the task allocation algorithms used, with the main focus being on more recent works. Our analysis of these methods focuses primarily on their complexity, optimality, and scalability. Additionally, the communication schemes commonly utilized are presented, as well as the impact of uncertainty on task allocation of UAVs. Finally, these methods are compared based on the aforementioned criteria, suggesting the most promising approaches

    Autonomous Drone Landings on an Unmanned Marine Vehicle using Deep Reinforcement Learning

    Get PDF
    This thesis describes with the integration of an Unmanned Surface Vehicle (USV) and an Unmanned Aerial Vehicle (UAV, also commonly known as drone) in a single Multi-Agent System (MAS). In marine robotics, the advantage offered by a MAS consists of exploiting the key features of a single robot to compensate for the shortcomings in the other. In this way, a USV can serve as the landing platform to alleviate the need for a UAV to be airborne for long periods time, whilst the latter can increase the overall environmental awareness thanks to the possibility to cover large portions of the prevailing environment with a camera (or more than one) mounted on it. There are numerous potential applications in which this system can be used, such as deployment in search and rescue missions, water and coastal monitoring, and reconnaissance and force protection, to name but a few. The theory developed is of a general nature. The landing manoeuvre has been accomplished mainly identifying, through artificial vision techniques, a fiducial marker placed on a flat surface serving as a landing platform. The raison d'etre for the thesis was to propose a new solution for autonomous landing that relies solely on onboard sensors and with minimum or no communications between the vehicles. To this end, initial work solved the problem while using only data from the cameras mounted on the in-flight drone. In the situation in which the tracking of the marker is interrupted, the current position of the USV is estimated and integrated into the control commands. The limitations of classic control theory used in this approached suggested the need for a new solution that empowered the flexibility of intelligent methods, such as fuzzy logic or artificial neural networks. The recent achievements obtained by deep reinforcement learning (DRL) techniques in end-to-end control in playing the Atari video-games suite represented a fascinating while challenging new way to see and address the landing problem. Therefore, novel architectures were designed for approximating the action-value function of a Q-learning algorithm and used to map raw input observation to high-level navigation actions. In this way, the UAV learnt how to land from high latitude without any human supervision, using only low-resolution grey-scale images and with a level of accuracy and robustness. Both the approaches have been implemented on a simulated test-bed based on Gazebo simulator and the model of the Parrot AR-Drone. The solution based on DRL was further verified experimentally using the Parrot Bebop 2 in a series of trials. The outcomes demonstrate that both these innovative methods are both feasible and practicable, not only in an outdoor marine scenario but also in indoor ones as well

    Computational Intelligence for Cooperative Swarm Control

    Full text link
    Over the last few decades, swarm intelligence (SI) has shown significant benefits in many practical applications. Real-world applications of swarm intelligence include disaster response and wildlife conservation. Swarm robots can collaborate to search for survivors, locate victims, and assess damage in hazardous environments during an earthquake or natural disaster. They can coordinate their movements and share data in real-time to increase their efficiency and effectiveness while guiding the survivors. In addition to tracking animal movements and behaviour, robots can guide animals to or away from specific areas. Sheep herding is a significant source of income in Australia that could be significantly enhanced if the human shepherd could be supported by single or multiple robots. Although the shepherding framework has become a popular SI mechanism, where a leading agent (sheepdog) controls a swarm of agents (sheep) to complete a task, controlling a swarm of agents is still not a trivial task, especially in the presence of some practical constraints. For example, most of the existing shepherding literature assumes that each swarm member has an unlimited sensing range to recognise all other members’ locations. However, this is not practical for physical systems. In addition, current approaches do not consider shepherding as a distributed system where an agent, namely a central unit, may observe the environment and commu- nicate with the shepherd to guide the swarm. However, this brings another hurdle when noisy communication channels between the central unit and the shepherd af- fect the success of the mission. Also, the literature lacks shepherding models that can cope with dynamic communication systems. Therefore, this thesis aims to design a multi-agent learning system for effective shepherding control systems in a partially observable environment under communication constraints. To achieve this goal, the thesis first introduces a new methodology to guide agents whose sensing range is limited. In this thesis, the sheep are modelled as an induced network to represent the sheep’s sensing range and propose a geometric method for finding a shepherd-impacted subset of sheep. The proposed swarm optimal herding point uses a particle swarm optimiser and a clustering mechanism to find the sheepdog’s near-optimal herding location while considering flock cohesion. Then, an improved version of the algorithm (named swarm optimal modified centroid push) is proposed to estimate the sheepdog’s intermediate waypoints to the herding point considering the sheep cohesion. The approaches outperform existing shepherding methods in reducing task time and increasing the success rate for herding. Next, to improve shepherding in noisy communication channels, this thesis pro- poses a collaborative learning-based method to enhance communication between the central unit and the herding agent. The proposed independent pre-training collab- orative learning technique decreases the transmission mean square error by half in 10% of the training time compared to existing approaches. The algorithm is then ex- tended so that the sheepdog can read the modulated herding points from the central unit. The results demonstrate the efficiency of the new technique in time-varying noisy channels. Finally, the central unit is modelled as a mobile agent to lower the time-varying noise caused by the sheepdog’s motion during the task. So, I propose a Q-learning- based incremental search to increase transmission success between the shepherd and the central unit. In addition, two unique reward functions are presented to ensure swarm guidance success with minimal energy consumption. The results demonstrate an increase in the success rate for shepherding

    SPARC 2016 Salford postgraduate annual research conference book of abstracts

    Get PDF

    Activity Report 2021 : Automatic Control, Lund University

    Get PDF

    Activity Report 2020 : Automatic Control Lund University

    Get PDF

    Enhanced Living Environments

    Get PDF
    This open access book was prepared as a Final Publication of the COST Action IC1303 “Algorithms, Architectures and Platforms for Enhanced Living Environments (AAPELE)”. The concept of Enhanced Living Environments (ELE) refers to the area of Ambient Assisted Living (AAL) that is more related with Information and Communication Technologies (ICT). Effective ELE solutions require appropriate ICT algorithms, architectures, platforms, and systems, having in view the advance of science and technology in this area and the development of new and innovative solutions that can provide improvements in the quality of life for people in their homes and can reduce the financial burden on the budgets of the healthcare providers. The aim of this book is to become a state-of-the-art reference, discussing progress made, as well as prompting future directions on theories, practices, standards, and strategies related to the ELE area. The book contains 12 chapters and can serve as a valuable reference for undergraduate students, post-graduate students, educators, faculty members, researchers, engineers, medical doctors, healthcare organizations, insurance companies, and research strategists working in this area
    • …
    corecore