115,667 research outputs found

    Analyzing Heterogeneity In Neuroimaging With Probabilistic Multivariate Clustering Approaches

    Get PDF
    Automated quantitative neuroimaging analysis methods have been crucial in elucidating normal and pathological brain structure and function, and in building in vivo markers of disease and its progression. Commonly used methods can identify and precisely quantify subtle and spatially complex imaging patterns of brain change associated with brain diseases. However, the overarching premise of these methods is that the disease group is a homogeneous entity resulting from a single, unifying pathophysiological process that has a single imaging signature. This assumption ignores ample evidence for the heterogeneous nature of neurodegenerative diseases and neuropsychiatric disorders, resulting in incomplete or misleading descriptions. Accurate characterization of heterogeneity is important for deepening our understanding of neurobiological processes, thus leading to improved disease diagnosis and prognosis. In this thesis, we leveraged machine learning techniques to develop novel tools that can analyze the heterogeneity in both cross-sectional and longitudinal neuroimaging studies. Specifically, we developed a semi-supervised clustering method for characterizing heterogeneity in cross-sectional group comparison studies, where normal and patient populations are modeled as high-dimensional point distributions, and heterogeneous disease effects are captured by estimating multiple transformations that align the two distributions, while accounting for the effect of nuisance covariates. Moreover, toward dissecting the heterogeneity in longitudinal cohorts, we proposed a method which simultaneously fits multiple population longitudinal multivariate trajectories and clusters subjects into subgroups. Longitudinal trajectories are modeled using spatiotemporally regularized cubic splines, while clustering is performed by assigning subjects to the subgroup whose population trajectory best fits their data. The proposed tools were extensively validated using synthetic data. Importantly, they were applied to study the heterogeneity in large clinical neuroimaging cohorts. We identified four disease subtypes with distinct imaging signatures using data from Alzheimer’s Disease Neuroimaging Initiative, and revealed two subgroups with different longitudinal patterns using data from Baltimore Longitudinal Study on Aging. Critically, we were able to further characterize the subgroups in each of the studies by performing statistical analyses evaluating subgroup differences with additional information such as neurocognitive data. Our results demonstrate the strength of the developed methods, and may pave the road for a broader understanding of the complexity of brain aging and Alzheimer’s disease

    Multiple kernel learning with random effects for predicting longitudinal outcomes and data integration

    Get PDF
    Predicting disease risk and progression is one of the main goals in many clinical research studies. Cohort studies on the natural history and etiology of chronic diseases span years and data are collected at multiple visits. Although kernel-based statistical learning methods are proven to be powerful for a wide range of disease prediction problems, these methods are only well studied for independent data but not for longitudinal data. It is thus important to develop time-sensitive prediction rules that make use of the longitudinal nature of the data. In this paper, we develop a novel statistical learning method for longitudinal data by introducing subject-specific short-term and long-term latent effects through a designed kernel to account for within-subject correlation of longitudinal measurements. Since the presence of multiple sources of data is increasingly common, we embed our method in a multiple kernel learning framework and propose a regularized multiple kernel statistical learning with random effects to construct effective nonparametric prediction rules. Our method allows easy integration of various heterogeneous data sources and takes advantage of correlation among longitudinal measures to increase prediction power. We use different kernels for each data source taking advantage of the distinctive feature of each data modality, and then optimally combine data across modalities. We apply the developed methods to two large epidemiological studies, one on Huntington's disease and the other on Alzheimer's Disease (Alzheimer's Disease Neuroimaging Initiative, ADNI) where we explore a unique opportunity to combine imaging and genetic data to study prediction of mild cognitive impairment, and show a substantial gain in performance while accounting for the longitudinal aspect of the data

    MildInt: Deep Learning-Based Multimodal Longitudinal Data Integration Framework

    Get PDF
    As large amounts of heterogeneous biomedical data become available, numerous methods for integrating such datasets have been developed to extract complementary knowledge from multiple domains of sources. Recently, a deep learning approach has shown promising results in a variety of research areas. However, applying the deep learning approach requires expertise for constructing a deep architecture that can take multimodal longitudinal data. Thus, in this paper, a deep learning-based python package for data integration is developed. The python package deep learning-based multimodal longitudinal data integration framework (MildInt) provides the preconstructed deep learning architecture for a classification task. MildInt contains two learning phases: learning feature representation from each modality of data and training a classifier for the final decision. Adopting deep architecture in the first phase leads to learning more task-relevant feature representation than a linear model. In the second phase, linear regression classifier is used for detecting and investigating biomarkers from multimodal data. Thus, by combining the linear model and the deep learning model, higher accuracy and better interpretability can be achieved. We validated the performance of our package using simulation data and real data. For the real data, as a pilot study, we used clinical and multimodal neuroimaging datasets in Alzheimer's disease to predict the disease progression. MildInt is capable of integrating multiple forms of numerical data including time series and non-time series data for extracting complementary features from the multimodal dataset

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    The Classification of Qualifications in Social Surveys

    Get PDF

    Novelty of product innovation : the role of different networks

    Get PDF
    In the current competitive scenario, firms are driven to introduce products with a higher degree of novelty. Consequently, there is a growing need to understand the critical success factors behind radical innovation. Specifically, this work empirically and theoretically analyses the role of different types of collaborative networks in achieving product innovation and, more precisely, the degree of novelty. Using a longitudinal data of Spanish manufacturing firms, our results show that the continuity on the co-operative strategy, the type of partner and the diversity of collaborative networks are critical factors in achieving a higher degree of novelty in product innovatio
    • 

    corecore