440 research outputs found

    Sparse Continuous Distributions and Fenchel-Young Losses

    Full text link
    Exponential families are widely used in machine learning, including many distributions in continuous and discrete domains (e.g., Gaussian, Dirichlet, Poisson, and categorical distributions via the softmax transformation). Distributions in each of these families have fixed support. In contrast, for finite domains, recent work on sparse alternatives to softmax (e.g., sparsemax, α\alpha-entmax, and fusedmax), has led to distributions with varying support. This paper develops sparse alternatives to continuous distributions, based on several technical contributions: First, we define Ω\Omega-regularized prediction maps and Fenchel-Young losses for arbitrary domains (possibly countably infinite or continuous). For linearly parametrized families, we show that minimization of Fenchel-Young losses is equivalent to moment matching of the statistics, generalizing a fundamental property of exponential families. When Ω\Omega is a Tsallis negentropy with parameter α\alpha, we obtain ``deformed exponential families,'' which include α\alpha-entmax and sparsemax (α=2\alpha=2) as particular cases. For quadratic energy functions, the resulting densities are β\beta-Gaussians, an instance of elliptical distributions that contain as particular cases the Gaussian, biweight, triweight, and Epanechnikov densities, and for which we derive closed-form expressions for the variance, Tsallis entropy, and Fenchel-Young loss. When Ω\Omega is a total variation or Sobolev regularizer, we obtain a continuous version of the fusedmax. Finally, we introduce continuous-domain attention mechanisms, deriving efficient gradient backpropagation algorithms for α{1,4/3,3/2,2}\alpha \in \{1, 4/3, 3/2, 2\}. Using these algorithms, we demonstrate our sparse continuous distributions for attention-based audio classification and visual question answering, showing that they allow attending to time intervals and compact regions.Comment: JMLR 2022 camera ready version. arXiv admin note: text overlap with arXiv:2006.0721

    A Primal-Dual Convergence Analysis of Boosting

    Full text link
    Boosting combines weak learners into a predictor with low empirical risk. Its dual constructs a high entropy distribution upon which weak learners and training labels are uncorrelated. This manuscript studies this primal-dual relationship under a broad family of losses, including the exponential loss of AdaBoost and the logistic loss, revealing: - Weak learnability aids the whole loss family: for any {\epsilon}>0, O(ln(1/{\epsilon})) iterations suffice to produce a predictor with empirical risk {\epsilon}-close to the infimum; - The circumstances granting the existence of an empirical risk minimizer may be characterized in terms of the primal and dual problems, yielding a new proof of the known rate O(ln(1/{\epsilon})); - Arbitrary instances may be decomposed into the above two, granting rate O(1/{\epsilon}), with a matching lower bound provided for the logistic loss.Comment: 40 pages, 8 figures; the NIPS 2011 submission "The Fast Convergence of Boosting" is a brief presentation of the primary results; compared with the JMLR version, this arXiv version has hyperref and some formatting tweak

    A Modern Introduction to Online Learning

    Full text link
    In this monograph, I introduce the basic concepts of Online Learning through a modern view of Online Convex Optimization. Here, online learning refers to the framework of regret minimization under worst-case assumptions. I present first-order and second-order algorithms for online learning with convex losses, in Euclidean and non-Euclidean settings. All the algorithms are clearly presented as instantiation of Online Mirror Descent or Follow-The-Regularized-Leader and their variants. Particular attention is given to the issue of tuning the parameters of the algorithms and learning in unbounded domains, through adaptive and parameter-free online learning algorithms. Non-convex losses are dealt through convex surrogate losses and through randomization. The bandit setting is also briefly discussed, touching on the problem of adversarial and stochastic multi-armed bandits. These notes do not require prior knowledge of convex analysis and all the required mathematical tools are rigorously explained. Moreover, all the proofs have been carefully chosen to be as simple and as short as possible.Comment: Fixed more typos, added more history bits, added local norms bounds for OMD and FTR

    Optimization with Sparsity-Inducing Penalties

    Get PDF
    Sparse estimation methods are aimed at using or obtaining parsimonious representations of data or models. They were first dedicated to linear variable selection but numerous extensions have now emerged such as structured sparsity or kernel selection. It turns out that many of the related estimation problems can be cast as convex optimization problems by regularizing the empirical risk with appropriate non-smooth norms. The goal of this paper is to present from a general perspective optimization tools and techniques dedicated to such sparsity-inducing penalties. We cover proximal methods, block-coordinate descent, reweighted 2\ell_2-penalized techniques, working-set and homotopy methods, as well as non-convex formulations and extensions, and provide an extensive set of experiments to compare various algorithms from a computational point of view
    corecore