90,368 research outputs found

    Sparse projections onto the simplex

    Get PDF
    Most learning methods with rank or sparsity constraints use convex relaxations, which lead to optimization with the nuclear norm or the â„“1\ell_1-norm. However, several important learning applications cannot benefit from this approach as they feature these convex norms as constraints in addition to the non-convex rank and sparsity constraints. In this setting, we derive efficient sparse projections onto the simplex and its extension, and illustrate how to use them to solve high-dimensional learning problems in quantum tomography, sparse density estimation and portfolio selection with non-convex constraints.Comment: 9 Page

    Proximally Constrained Methods for Weakly Convex Optimization with Weakly Convex Constraints

    Full text link
    Optimization models with non-convex constraints arise in many tasks in machine learning, e.g., learning with fairness constraints or Neyman-Pearson classification with non-convex loss. Although many efficient methods have been developed with theoretical convergence guarantees for non-convex unconstrained problems, it remains a challenge to design provably efficient algorithms for problems with non-convex functional constraints. This paper proposes a class of subgradient methods for constrained optimization where the objective function and the constraint functions are are weakly convex. Our methods solve a sequence of strongly convex subproblems, where a proximal term is added to both the objective function and each constraint function. Each subproblem can be solved by various algorithms for strongly convex optimization. Under a uniform Slater's condition, we establish the computation complexities of our methods for finding a nearly stationary point

    Decentralized Non-Convex Learning with Linearly Coupled Constraints

    Full text link
    Motivated by the need for decentralized learning, this paper aims at designing a distributed algorithm for solving nonconvex problems with general linear constraints over a multi-agent network. In the considered problem, each agent owns some local information and a local variable for jointly minimizing a cost function, but local variables are coupled by linear constraints. Most of the existing methods for such problems are only applicable for convex problems or problems with specific linear constraints. There still lacks a distributed algorithm for such problems with general linear constraints and under nonconvex setting. In this paper, to tackle this problem, we propose a new algorithm, called "proximal dual consensus" (PDC) algorithm, which combines a proximal technique and a dual consensus method. We build the theoretical convergence conditions and show that the proposed PDC algorithm can converge to an ϵ\epsilon-Karush-Kuhn-Tucker solution within O(1/ϵ)\mathcal{O}(1/\epsilon) iterations. For computation reduction, the PDC algorithm can choose to perform cheap gradient descent per iteration while preserving the same order of O(1/ϵ)\mathcal{O}(1/\epsilon) iteration complexity. Numerical results are presented to demonstrate the good performance of the proposed algorithms for solving a regression problem and a classification problem over a network where agents have only partial observations of data features

    Structured sparsity-inducing norms through submodular functions

    Get PDF
    Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the L1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its \lova extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning
    • …
    corecore