44,130 research outputs found

    Learning with Biased Complementary Labels

    Full text link
    In this paper, we study the classification problem in which we have access to easily obtainable surrogate for true labels, namely complementary labels, which specify classes that observations do \textbf{not} belong to. Let YY and Yˉ\bar{Y} be the true and complementary labels, respectively. We first model the annotation of complementary labels via transition probabilities P(Yˉ=i∣Y=j),i≠j∈{1,⋯ ,c}P(\bar{Y}=i|Y=j), i\neq j\in\{1,\cdots,c\}, where cc is the number of classes. Previous methods implicitly assume that P(Yˉ=i∣Y=j),∀i≠jP(\bar{Y}=i|Y=j), \forall i\neq j, are identical, which is not true in practice because humans are biased toward their own experience. For example, as shown in Figure 1, if an annotator is more familiar with monkeys than prairie dogs when providing complementary labels for meerkats, she is more likely to employ "monkey" as a complementary label. We therefore reason that the transition probabilities will be different. In this paper, we propose a framework that contributes three main innovations to learning with \textbf{biased} complementary labels: (1) It estimates transition probabilities with no bias. (2) It provides a general method to modify traditional loss functions and extends standard deep neural network classifiers to learn with biased complementary labels. (3) It theoretically ensures that the classifier learned with complementary labels converges to the optimal one learned with true labels. Comprehensive experiments on several benchmark datasets validate the superiority of our method to current state-of-the-art methods.Comment: ECCV 2018 Ora

    Generative-Discriminative Complementary Learning

    Get PDF
    Majority of state-of-the-art deep learning methods are discriminative approaches, which model the conditional distribution of labels given inputs features. The success of such approaches heavily depends on high-quality labeled instances, which are not easy to obtain, especially as the number of candidate classes increases. In this paper, we study the complementary learning problem. Unlike ordinary labels, complementary labels are easy to obtain because an annotator only needs to provide a yes/no answer to a randomly chosen candidate class for each instance. We propose a generative-discriminative complementary learning method that estimates the ordinary labels by modeling both the conditional (discriminative) and instance (generative) distributions. Our method, we call Complementary Conditional GAN (CCGAN), improves the accuracy of predicting ordinary labels and can generate high-quality instances in spite of weak supervision. In addition to the extensive empirical studies, we also theoretically show that our model can retrieve the true conditional distribution from the complementarily-labeled data

    Scrutinizing and De-Biasing Intuitive Physics with Neural Stethoscopes

    Full text link
    Visually predicting the stability of block towers is a popular task in the domain of intuitive physics. While previous work focusses on prediction accuracy, a one-dimensional performance measure, we provide a broader analysis of the learned physical understanding of the final model and how the learning process can be guided. To this end, we introduce neural stethoscopes as a general purpose framework for quantifying the degree of importance of specific factors of influence in deep neural networks as well as for actively promoting and suppressing information as appropriate. In doing so, we unify concepts from multitask learning as well as training with auxiliary and adversarial losses. We apply neural stethoscopes to analyse the state-of-the-art neural network for stability prediction. We show that the baseline model is susceptible to being misled by incorrect visual cues. This leads to a performance breakdown to the level of random guessing when training on scenarios where visual cues are inversely correlated with stability. Using stethoscopes to promote meaningful feature extraction increases performance from 51% to 90% prediction accuracy. Conversely, training on an easy dataset where visual cues are positively correlated with stability, the baseline model learns a bias leading to poor performance on a harder dataset. Using an adversarial stethoscope, the network is successfully de-biased, leading to a performance increase from 66% to 88%

    Distribution-Aware Semantics-Oriented Pseudo-label for Imbalanced Semi-Supervised Learning

    Full text link
    The capability of the traditional semi-supervised learning (SSL) methods is far from real-world application since they do not consider (1) class imbalance and (2) class distribution mismatch between labeled and unlabeled data. This paper addresses such a relatively under-explored problem, imbalanced semi-supervised learning, where heavily biased pseudo-labels can harm the model performance. Interestingly, we find that the semantic pseudo-labels from a similarity-based classifier in feature space and the traditional pseudo-labels from the linear classifier show the complementary property. To this end, we propose a general pseudo-labeling framework to address the bias motivated by this observation. The key idea is to class-adaptively blend the semantic pseudo-label to the linear one, depending on the current pseudo-label distribution. Thereby, the increased semantic pseudo-label component suppresses the false positives in the majority classes and vice versa. We term the novel pseudo-labeling framework for imbalanced SSL as Distribution-Aware Semantics-Oriented (DASO) Pseudo-label. Extensive evaluation on CIFAR10/100-LT and STL10-LT shows that DASO consistently outperforms both recently proposed re-balancing methods for label and pseudo-label. Moreover, we demonstrate that typical SSL algorithms can effectively benefit from unlabeled data with DASO, especially when (1) class imbalance and (2) class distribution mismatch exist and even on recent real-world Semi-Aves benchmark.Comment: "Code: https://github.com/ytaek-oh/daso
    • …
    corecore