107,593 research outputs found

    Image Clustering with Contrastive Learning and Multi-scale Graph Convolutional Networks

    Full text link
    Deep clustering has recently attracted significant attention. Despite the remarkable progress, most of the previous deep clustering works still suffer from two limitations. First, many of them focus on some distribution-based clustering loss, lacking the ability to exploit sample-wise (or augmentation-wise) relationships via contrastive learning. Second, they often neglect the indirect sample-wise structure information, overlooking the rich possibilities of multi-scale neighborhood structure learning. In view of this, this paper presents a new deep clustering approach termed Image clustering with contrastive learning and multi-scale Graph Convolutional Networks (IcicleGCN), which bridges the gap between convolutional neural network (CNN) and graph convolutional network (GCN) as well as the gap between contrastive learning and multi-scale neighborhood structure learning for the image clustering task. The proposed IcicleGCN framework consists of four main modules, namely, the CNN-based backbone, the Instance Similarity Module (ISM), the Joint Cluster Structure Learning and Instance reconstruction Module (JC-SLIM), and the Multi-scale GCN module (M-GCN). Specifically, with two random augmentations performed on each image, the backbone network with two weight-sharing views is utilized to learn the representations for the augmented samples, which are then fed to ISM and JC-SLIM for instance-level and cluster-level contrastive learning, respectively. Further, to enforce multi-scale neighborhood structure learning, two streams of GCNs and an auto-encoder are simultaneously trained via (i) the layer-wise interaction with representation fusion and (ii) the joint self-adaptive learning that ensures their last-layer output distributions to be consistent. Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art

    Learning Transferable Adversarial Robust Representations via Multi-view Consistency

    Full text link
    Despite the success on few-shot learning problems, most meta-learned models only focus on achieving good performance on clean examples and thus easily break down when given adversarially perturbed samples. While some recent works have shown that a combination of adversarial learning and meta-learning could enhance the robustness of a meta-learner against adversarial attacks, they fail to achieve generalizable adversarial robustness to unseen domains and tasks, which is the ultimate goal of meta-learning. To address this challenge, we propose a novel meta-adversarial multi-view representation learning framework with dual encoders. Specifically, we introduce the discrepancy across the two differently augmented samples of the same data instance by first updating the encoder parameters with them and further imposing a novel label-free adversarial attack to maximize their discrepancy. Then, we maximize the consistency across the views to learn transferable robust representations across domains and tasks. Through experimental validation on multiple benchmarks, we demonstrate the effectiveness of our framework on few-shot learning tasks from unseen domains, achieving over 10\% robust accuracy improvements against previous adversarial meta-learning baselines.Comment: *Equal contribution (Author ordering determined by coin flip). NeurIPS SafetyML workshop 2022, Under revie

    Augmented Reality Meets Computer Vision : Efficient Data Generation for Urban Driving Scenes

    Full text link
    The success of deep learning in computer vision is based on availability of large annotated datasets. To lower the need for hand labeled images, virtually rendered 3D worlds have recently gained popularity. Creating realistic 3D content is challenging on its own and requires significant human effort. In this work, we propose an alternative paradigm which combines real and synthetic data for learning semantic instance segmentation and object detection models. Exploiting the fact that not all aspects of the scene are equally important for this task, we propose to augment real-world imagery with virtual objects of the target category. Capturing real-world images at large scale is easy and cheap, and directly provides real background appearances without the need for creating complex 3D models of the environment. We present an efficient procedure to augment real images with virtual objects. This allows us to create realistic composite images which exhibit both realistic background appearance and a large number of complex object arrangements. In contrast to modeling complete 3D environments, our augmentation approach requires only a few user interactions in combination with 3D shapes of the target object. Through extensive experimentation, we conclude the right set of parameters to produce augmented data which can maximally enhance the performance of instance segmentation models. Further, we demonstrate the utility of our approach on training standard deep models for semantic instance segmentation and object detection of cars in outdoor driving scenes. We test the models trained on our augmented data on the KITTI 2015 dataset, which we have annotated with pixel-accurate ground truth, and on Cityscapes dataset. Our experiments demonstrate that models trained on augmented imagery generalize better than those trained on synthetic data or models trained on limited amount of annotated real data

    iPose: Instance-Aware 6D Pose Estimation of Partly Occluded Objects

    Full text link
    We address the task of 6D pose estimation of known rigid objects from single input images in scenarios where the objects are partly occluded. Recent RGB-D-based methods are robust to moderate degrees of occlusion. For RGB inputs, no previous method works well for partly occluded objects. Our main contribution is to present the first deep learning-based system that estimates accurate poses for partly occluded objects from RGB-D and RGB input. We achieve this with a new instance-aware pipeline that decomposes 6D object pose estimation into a sequence of simpler steps, where each step removes specific aspects of the problem. The first step localizes all known objects in the image using an instance segmentation network, and hence eliminates surrounding clutter and occluders. The second step densely maps pixels to 3D object surface positions, so called object coordinates, using an encoder-decoder network, and hence eliminates object appearance. The third, and final, step predicts the 6D pose using geometric optimization. We demonstrate that we significantly outperform the state-of-the-art for pose estimation of partly occluded objects for both RGB and RGB-D input

    Teaching complex theoretical multi-step problems in ICT networking through 3D printing and augmented reality

    Get PDF
    This paper presents a pilot study rationale and research methodology using a mixed media visualisation (3D printing and Augmented Reality simulation) learning intervention to help students in an ICT degree represent theoretical complex multi-step problems without a corresponding real world physical analog model. This is important because these concepts are difficult to visualise without a corresponding mental model. The proposed intervention uses an augmented reality application programmed with free commercially available tools, tested through an action research methodology, to evaluate the effectiveness of the mixed media visualisation techniques to teach ICT students networking. Specifically, 3D models of network equipment will be placed in a field and then the augmented reality app can be used to observe packet traversal and routing between the different devices as data travels from the source to the destination. Outcomes are expected to be an overall improvement in final skill level for all students

    On the Importance of Visual Context for Data Augmentation in Scene Understanding

    Get PDF
    Performing data augmentation for learning deep neural networks is known to be important for training visual recognition systems. By artificially increasing the number of training examples, it helps reducing overfitting and improves generalization. While simple image transformations can already improve predictive performance in most vision tasks, larger gains can be obtained by leveraging task-specific prior knowledge. In this work, we consider object detection, semantic and instance segmentation and augment the training images by blending objects in existing scenes, using instance segmentation annotations. We observe that randomly pasting objects on images hurts the performance, unless the object is placed in the right context. To resolve this issue, we propose an explicit context model by using a convolutional neural network, which predicts whether an image region is suitable for placing a given object or not. In our experiments, we show that our approach is able to improve object detection, semantic and instance segmentation on the PASCAL VOC12 and COCO datasets, with significant gains in a limited annotation scenario, i.e. when only one category is annotated. We also show that the method is not limited to datasets that come with expensive pixel-wise instance annotations and can be used when only bounding boxes are available, by employing weakly-supervised learning for instance masks approximation.Comment: Updated the experimental section. arXiv admin note: substantial text overlap with arXiv:1807.0742
    • …
    corecore