122,651 research outputs found

    Combining Language and Vision with a Multimodal Skip-gram Model

    Full text link
    We extend the SKIP-GRAM model of Mikolov et al. (2013a) by taking visual information into account. Like SKIP-GRAM, our multimodal models (MMSKIP-GRAM) build vector-based word representations by learning to predict linguistic contexts in text corpora. However, for a restricted set of words, the models are also exposed to visual representations of the objects they denote (extracted from natural images), and must predict linguistic and visual features jointly. The MMSKIP-GRAM models achieve good performance on a variety of semantic benchmarks. Moreover, since they propagate visual information to all words, we use them to improve image labeling and retrieval in the zero-shot setup, where the test concepts are never seen during model training. Finally, the MMSKIP-GRAM models discover intriguing visual properties of abstract words, paving the way to realistic implementations of embodied theories of meaning.Comment: accepted at NAACL 2015, camera ready version, 11 page

    Cross-Modal Concept Learning and Inference for Vision-Language Models

    Full text link
    Large-scale pre-trained Vision-Language Models (VLMs), such as CLIP, establish the correlation between texts and images, achieving remarkable success on various downstream tasks with fine-tuning. In existing fine-tuning methods, the class-specific text description is matched against the whole image. We recognize that this whole image matching is not effective since images from the same class often contain a set of different semantic objects, and an object further consists of a set of semantic parts or concepts. Individual semantic parts or concepts may appear in image samples from different classes. To address this issue, in this paper, we develop a new method called cross-model concept learning and inference (CCLI). Using the powerful text-image correlation capability of CLIP, our method automatically learns a large set of distinctive visual concepts from images using a set of semantic text concepts. Based on these visual concepts, we construct a discriminative representation of images and learn a concept inference network to perform downstream image classification tasks, such as few-shot learning and domain generalization. Extensive experimental results demonstrate that our CCLI method is able to improve the performance upon the current state-of-the-art methods by large margins, for example, by up to 8.0% improvement on few-shot learning and by up to 1.3% for domain generalization

    Detecting Semantic Parts on Partially Occluded Objects

    Get PDF
    In this paper, we address the task of detecting semantic parts on partially occluded objects. We consider a scenario where the model is trained using non-occluded images but tested on occluded images. The motivation is that there are infinite number of occlusion patterns in real world, which cannot be fully covered in the training data. So the models should be inherently robust and adaptive to occlusions instead of fitting / learning the occlusion patterns in the training data. Our approach detects semantic parts by accumulating the confidence of local visual cues. Specifically, the method uses a simple voting method, based on log-likelihood ratio tests and spatial constraints, to combine the evidence of local cues. These cues are called visual concepts, which are derived by clustering the internal states of deep networks. We evaluate our voting scheme on the VehicleSemanticPart dataset with dense part annotations. We randomly place two, three or four irrelevant objects onto the target object to generate testing images with various occlusions. Experiments show that our algorithm outperforms several competitors in semantic part detection when occlusions are present.Comment: Accepted to BMVC 2017 (13 pages, 3 figures

    Everyday concept detection in visual lifelogs: validation, relationships and trends

    Get PDF
    The Microsoft SenseCam is a small lightweight wearable camera used to passively capture photos and other sensor readings from a user's day-to-day activities. It can capture up to 3,000 images per day, equating to almost 1 million images per year. It is used to aid memory by creating a personal multimedia lifelog, or visual recording of the wearer's life. However the sheer volume of image data captured within a visual lifelog creates a number of challenges, particularly for locating relevant content. Within this work, we explore the applicability of semantic concept detection, a method often used within video retrieval, on the novel domain of visual lifelogs. A concept detector models the correspondence between low-level visual features and high-level semantic concepts (such as indoors, outdoors, people, buildings, etc.) using supervised machine learning. By doing so it determines the probability of a concept's presence. We apply detection of 27 everyday semantic concepts on a lifelog collection composed of 257,518 SenseCam images from 5 users. The results were then evaluated on a subset of 95,907 images, to determine the precision for detection of each semantic concept. We conduct further analysis on the temporal consistency, co-occurance and trends within the detected concepts to more extensively investigate the robustness of the detectors within this novel domain. We additionally present future applications of concept detection within the domain of lifelogging

    Concept Generalization in Visual Representation Learning

    Get PDF
    Measuring concept generalization, i.e., the extent to which models trained on a set of (seen) visual concepts can be used to recognize a new set of (unseen) concepts, is a popular way of evaluating visual representations, especially when they are learned with self-supervised learning. Nonetheless, the choice of which unseen concepts to use is usually made arbitrarily, and independently from the seen concepts used to train representations, thus ignoring any semantic relationships between the two. In this paper, we argue that semantic relationships between seen and unseen concepts affect generalization performance and propose ImageNet-CoG, a novel benchmark on the ImageNet dataset that enables measuring concept generalization in a principled way. Our benchmark leverages expert knowledge that comes from WordNet in order to define a sequence of unseen ImageNet concept sets that are semantically more and more distant from the ImageNet-1K subset, a ubiquitous training set. This allows us to benchmark visual representations learned on ImageNet-1K out-of-the box: we analyse a number of such models from supervised, semi-supervised and self-supervised approaches under the prism of concept generalization, and show how our benchmark is able to uncover a number of interesting insights. We will provide resources for the benchmark at https://europe.naverlabs.com/cog-benchmark
    corecore