11,789 research outputs found

    Multi-party Poisoning through Generalized pp-Tampering

    Get PDF
    In a poisoning attack against a learning algorithm, an adversary tampers with a fraction of the training data TT with the goal of increasing the classification error of the constructed hypothesis/model over the final test distribution. In the distributed setting, TT might be gathered gradually from mm data providers P1,…,PmP_1,\dots,P_m who generate and submit their shares of TT in an online way. In this work, we initiate a formal study of (k,p)(k,p)-poisoning attacks in which an adversary controls k∈[n]k\in[n] of the parties, and even for each corrupted party PiP_i, the adversary submits some poisoned data Tiβ€²T'_i on behalf of PiP_i that is still "(1βˆ’p)(1-p)-close" to the correct data TiT_i (e.g., 1βˆ’p1-p fraction of Tiβ€²T'_i is still honestly generated). For k=mk=m, this model becomes the traditional notion of poisoning, and for p=1p=1 it coincides with the standard notion of corruption in multi-party computation. We prove that if there is an initial constant error for the generated hypothesis hh, there is always a (k,p)(k,p)-poisoning attacker who can decrease the confidence of hh (to have a small error), or alternatively increase the error of hh, by Ξ©(pβ‹…k/m)\Omega(p \cdot k/m). Our attacks can be implemented in polynomial time given samples from the correct data, and they use no wrong labels if the original distributions are not noisy. At a technical level, we prove a general lemma about biasing bounded functions f(x1,…,xn)∈[0,1]f(x_1,\dots,x_n)\in[0,1] through an attack model in which each block xix_i might be controlled by an adversary with marginal probability pp in an online way. When the probabilities are independent, this coincides with the model of pp-tampering attacks, thus we call our model generalized pp-tampering. We prove the power of such attacks by incorporating ideas from the context of coin-flipping attacks into the pp-tampering model and generalize the results in both of these areas
    • …
    corecore