573 research outputs found

    Beyond the One Step Greedy Approach in Reinforcement Learning

    Get PDF
    The famous Policy Iteration algorithm alternates between policy improvement and policy evaluation. Implementations of this algorithm with several variants of the latter evaluation stage, e.g, nn-step and trace-based returns, have been analyzed in previous works. However, the case of multiple-step lookahead policy improvement, despite the recent increase in empirical evidence of its strength, has to our knowledge not been carefully analyzed yet. In this work, we introduce the first such analysis. Namely, we formulate variants of multiple-step policy improvement, derive new algorithms using these definitions and prove their convergence. Moreover, we show that recent prominent Reinforcement Learning algorithms are, in fact, instances of our framework. We thus shed light on their empirical success and give a recipe for deriving new algorithms for future study.Comment: ICML 201

    Social interaction for efficient agent learning from human reward

    Get PDF
    Abstract - Learning from rewards generated by a human trainer observing an agent in action has been proven to be a powerful method for teaching autonomous agents to perform challenging tasks, especially for those non-technical users. Since the efficacy of this approach depends critically on the reward the trainer provides, we consider how the interaction between the trainer and the agent should be designed so as to increase the efficiency of the training process. This article investigates the influence of the agent’s socio-competitive feedback on the human trainer’s training behavior and the agent’s learning. The results of our user study with 85 participants suggest that the agent’s passive socio-competitive feedback—showing performance and score of agents trained by trainers in a leaderboard—substantially increases the engagement of the participants in the game task and improves the agents’ performance, even though the participants do not directly play the game but instead train the agent to do so. Moreover, making this feedback active—sending the trainer her agent’s performance relative to others—further induces more participants to train agents longer and improves the agent’s learning. Our further analysis shows that agents trained by trainers affected by both the passive and active social feedback could obtain a higher performance under a score mechanism that could be optimized from the trainer’s perspective and the agent’s additional active social feedback can keep participants to further train agents to learn policies that can obtain a higher performance under such a score mechanism.Fundamental Research Funds for the Central Universities of China (Grant No. 841713015)China Postdoctoral Science Foundatio
    • …
    corecore