15,337 research outputs found

    Integration of virtual reality within the built environment curriculum

    Get PDF
    Virtual Reality (VR) technology is still perceived by many as being inaccessible and cost prohibitive with VR applications considered expensive to develop as well as challenging to operate. This paper reflects on current developments in VR technologies and describes an approach adopted for its phased integration into the academic curriculum of built environment students. The process and end results of implementing the integration are discussed and the paper illustrates the challenges of introducing VR, including the acceptance of the technology by academic staff and students, interest from industry, and issues pertaining to model development. It sets out to show that fairly sophisticated VR models can now be created by non-VR specialists using commercially available software and advocates that the implementation of VR will increase alongside industryis adoption of these tools and the emergence of a new generation of students with VR skills. The study shows that current VR technologies, if integrated appropriately within built environment academic programmes, demonstrate clear promise to provide a foundation for more widespread collaborative working environments

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery

    The virtual playground: an educational virtual reality environment for evaluating interactivity and conceptual learning

    Get PDF
    The research presented in this paper aims at investigating user interaction in immersive virtual learning environments (VLEs), focusing on the role and the effect of interactivity on conceptual learning. The goal has been to examine if the learning of young users improves through interacting in (i.e. exploring, reacting to, and acting upon) an immersive virtual environment (VE) compared to non interactive or non-immersive environments. Empirical work was carried out with more than 55 primary school students between the ages of 8 and 12, in different between-group experiments: an exploratory study, a pilot study, and a large-scale experiment. The latter was conducted in a virtual environment designed to simulate a playground. In this ‘Virtual Playground’, each participant was asked to complete a set of tasks designed to address arithmetical ‘fractions’ problems. Three different conditions, two experimental virtual reality (VR) conditions and a non-VR condition, that varied the levels of activity and interactivity, were designed to evaluate how children accomplish the various tasks. Pre-tests, post-tests, interviews, video, audio, and log files were collected for each participant, and analyzed both quantitatively and qualitatively. This paper presents a selection of case studies extracted from the qualitative analysis, which illustrate the variety of approaches taken by children in the VEs in response to visual cues and system feedback. Results suggest that the fully interactive VE aided children in problem solving but did not provide as strong evidence of conceptual change as expected; rather, it was the passive VR environment, where activity was guided by a virtual robot, that seemed to support student reflection and recall, leading to indications of conceptual change

    Courseware in academic library user education: A literature review from the GAELS Joint Electronic Library Project

    Get PDF
    The use of courseware for information skills teaching in academic libraries has been growing for a number of years. In order to create effective courseware packages to support joint electronic library activity at Glasgow and Strathclyde Universities, the GAELS project conducted a literature review of the subject. This review discovered a range of factors common to successful library courseware implementations, such as the need for practitioners to feel a sense of ownership of the medium, a need for courseware customization to local information environments, and an emphasis on training packages for large bodies of undergraduates. However, we also noted underdeveloped aspects worthy of further attention, such as treatment of pedagogic issues in library computer‐aided learning (CAL) implementations and use of hypertextual learning materials for more advanced information skills training. We describe how these findings shaped the packages produced by the project and suggest ways forward for similar types of implementation

    Extending the palette: an analysis of the heterogeneity of techniques for communicating space

    Get PDF
    This study offers an analysis of the increasing range of communication methods required by the emerging profession of the architectural technologist. It reviews the process of introducing methods of communication into the academic curriculum of undergraduate architectural technology students who have a need to select appropriate techniques in order to communicate to various stakeholders, design teams and clients. The paper reviews the integration of three-dimensional computer modelling technologies for the analysis and communication of proposed designs and considers the knowledge and skills which will be required to enable effective representation of increasingly complex buildings

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Automated design analysis, assembly planning and motion study analysis using immersive virtual reality

    Get PDF
    Previous research work at Heriot-Watt University using immersive virtual reality (VR) for cable harness design showed that VR provided substantial productivity gains over traditional computer-aided design (CAD) systems. This follow-on work was aimed at understanding the degree to which aspects of this technology were contributed to these benefits and to determine if engineering design and planning processes could be analysed in detail by nonintrusively monitoring and logging engineering tasks. This involved using a CAD-equivalent VR system for cable harness routing design, harness assembly and installation planning that can be functionally evaluated using a set of creative design-tasks to measure the system and users' performance. A novel design task categorisation scheme was created and formalised which broke down the cable harness design process and associated activities. The system was also used to demonstrate the automatic generation of usable bulkhead connector, cable harness assembly and cable harness installation plans from non-intrusive user logging. Finally, the data generated from the user-logging allowed the automated activity categorisation of the user actions, automated generation of process flow diagrams and chronocyclegraphs
    corecore