35,384 research outputs found

    Learning to Translate in Real-time with Neural Machine Translation

    Get PDF
    Translating in real-time, a.k.a. simultaneous translation, outputs translation words before the input sentence ends, which is a challenging problem for conventional machine translation methods. We propose a neural machine translation (NMT) framework for simultaneous translation in which an agent learns to make decisions on when to translate from the interaction with a pre-trained NMT environment. To trade off quality and delay, we extensively explore various targets for delay and design a method for beam-search applicable in the simultaneous MT setting. Experiments against state-of-the-art baselines on two language pairs demonstrate the efficacy of the proposed framework both quantitatively and qualitatively.Comment: 10 pages, camera read

    Stronger Baselines for Trustable Results in Neural Machine Translation

    Full text link
    Interest in neural machine translation has grown rapidly as its effectiveness has been demonstrated across language and data scenarios. New research regularly introduces architectural and algorithmic improvements that lead to significant gains over "vanilla" NMT implementations. However, these new techniques are rarely evaluated in the context of previously published techniques, specifically those that are widely used in state-of-theart production and shared-task systems. As a result, it is often difficult to determine whether improvements from research will carry over to systems deployed for real-world use. In this work, we recommend three specific methods that are relatively easy to implement and result in much stronger experimental systems. Beyond reporting significantly higher BLEU scores, we conduct an in-depth analysis of where improvements originate and what inherent weaknesses of basic NMT models are being addressed. We then compare the relative gains afforded by several other techniques proposed in the literature when starting with vanilla systems versus our stronger baselines, showing that experimental conclusions may change depending on the baseline chosen. This indicates that choosing a strong baseline is crucial for reporting reliable experimental results.Comment: To appear at the Workshop on Neural Machine Translation (WNMT

    Neural System Combination for Machine Translation

    Full text link
    Neural machine translation (NMT) becomes a new approach to machine translation and generates much more fluent results compared to statistical machine translation (SMT). However, SMT is usually better than NMT in translation adequacy. It is therefore a promising direction to combine the advantages of both NMT and SMT. In this paper, we propose a neural system combination framework leveraging multi-source NMT, which takes as input the outputs of NMT and SMT systems and produces the final translation. Extensive experiments on the Chinese-to-English translation task show that our model archives significant improvement by 5.3 BLEU points over the best single system output and 3.4 BLEU points over the state-of-the-art traditional system combination methods.Comment: Accepted as a short paper by ACL-201

    Basque-to-Spanish and Spanish-to-Basque machine translation for the health domain

    Get PDF
    [EU]Master Amaierako Lan honek medikuntza domeinuko euskara eta gaztelera arteko itzulpen automatiko sistema bat garatzeko helburuarekin emandako lehenengo urratsak aurkezten ditu. Corpus elebidun nahikoaren faltan, hainbat esperimentu burutu dira Itzulpen Automatiko Neuronalean erabiltzen diren parametroak domeinuz kanpoko corpusean aztertzeko; medikuntza domeinuan izandako jokaera ebaluatzeko ordea, eskuz itzulitako corpusa erabili da medikuntza domeinuko corpusen presentzia handituz entrenatutako sistema desberdinak probatzeko. Lortutako emaitzek deskribatutako helbururako bidean lehenengo aurrerapausoa suposatzen dute.[EN]This project presents the initial steps towards the objective of developing a Machine Translation system for the health domain between Basque and Spanish. In the absence of a big enough bilingual corpus, several experiments have been carried out to test different Neural Machine Translation parameters on an out-of-domain corpus; while performance on the health domain has been evaluated with a manually translated corpus in different systems trained with increasing presence of health domain corpora. The results obtained represent a first step forward to the described objective
    corecore