233,096 research outputs found

    Language-Enhanced Session-Based Recommendation with Decoupled Contrastive Learning

    Full text link
    Session-based recommendation techniques aim to capture dynamic user behavior by analyzing past interactions. However, existing methods heavily rely on historical item ID sequences to extract user preferences, leading to challenges such as popular bias and cold-start problems. In this paper, we propose a hybrid multimodal approach for session-based recommendation to address these challenges. Our approach combines different modalities, including textual content and item IDs, leveraging the complementary nature of these modalities using CatBoost. To learn universal item representations, we design a language representation-based item retrieval architecture that extracts features from the textual content utilizing pre-trained language models. Furthermore, we introduce a novel Decoupled Contrastive Learning method to enhance the effectiveness of the language representation. This technique decouples the sequence representation and item representation space, facilitating bidirectional alignment through dual-queue contrastive learning. Simultaneously, the momentum queue provides a large number of negative samples, effectively enhancing the effectiveness of contrastive learning. Our approach yielded competitive results, securing a 5th place ranking in KDD CUP 2023 Task 1. We have released the source code and pre-trained models associated with this work

    Self-Supervised Multi-Modal Sequential Recommendation

    Full text link
    With the increasing development of e-commerce and online services, personalized recommendation systems have become crucial for enhancing user satisfaction and driving business revenue. Traditional sequential recommendation methods that rely on explicit item IDs encounter challenges in handling item cold start and domain transfer problems. Recent approaches have attempted to use modal features associated with items as a replacement for item IDs, enabling the transfer of learned knowledge across different datasets. However, these methods typically calculate the correlation between the model's output and item embeddings, which may suffer from inconsistencies between high-level feature vectors and low-level feature embeddings, thereby hindering further model learning. To address this issue, we propose a dual-tower retrieval architecture for sequence recommendation. In this architecture, the predicted embedding from the user encoder is used to retrieve the generated embedding from the item encoder, thereby alleviating the issue of inconsistent feature levels. Moreover, in order to further improve the retrieval performance of the model, we also propose a self-supervised multi-modal pretraining method inspired by the consistency property of contrastive learning. This pretraining method enables the model to align various feature combinations of items, thereby effectively generalizing to diverse datasets with different item features. We evaluate the proposed method on five publicly available datasets and conduct extensive experiments. The results demonstrate significant performance improvement of our method

    Adversarial Attacks on Remote User Authentication Using Behavioural Mouse Dynamics

    Full text link
    Mouse dynamics is a potential means of authenticating users. Typically, the authentication process is based on classical machine learning techniques, but recently, deep learning techniques have been introduced for this purpose. Although prior research has demonstrated how machine learning and deep learning algorithms can be bypassed by carefully crafted adversarial samples, there has been very little research performed on the topic of behavioural biometrics in the adversarial domain. In an attempt to address this gap, we built a set of attacks, which are applications of several generative approaches, to construct adversarial mouse trajectories that bypass authentication models. These generated mouse sequences will serve as the adversarial samples in the context of our experiments. We also present an analysis of the attack approaches we explored, explaining their limitations. In contrast to previous work, we consider the attacks in a more realistic and challenging setting in which an attacker has access to recorded user data but does not have access to the authentication model or its outputs. We explore three different attack strategies: 1) statistics-based, 2) imitation-based, and 3) surrogate-based; we show that they are able to evade the functionality of the authentication models, thereby impacting their robustness adversely. We show that imitation-based attacks often perform better than surrogate-based attacks, unless, however, the attacker can guess the architecture of the authentication model. In such cases, we propose a potential detection mechanism against surrogate-based attacks.Comment: Accepted in 2019 International Joint Conference on Neural Networks (IJCNN). Update of DO

    Contextual Attention Recurrent Architecture for Context-aware Venue Recommendation

    Get PDF
    Venue recommendation systems aim to effectively rank a list of interesting venues users should visit based on their historical feedback (e.g. checkins). Such systems are increasingly deployed by Location-based Social Networks (LBSNs) such as Foursquare and Yelp to enhance their usefulness to users. Recently, various RNN architectures have been proposed to incorporate contextual information associated with the users' sequence of checkins (e.g. time of the day, location of venues) to effectively capture the users' dynamic preferences. However, these architectures assume that different types of contexts have an identical impact on the users' preferences, which may not hold in practice. For example, an ordinary context such as the time of the day reflects the user's current contextual preferences, whereas a transition context - such as a time interval from their last visited venue - indicates a transition effect from past behaviour to future behaviour. To address these challenges, we propose a novel Contextual Attention Recurrent Architecture (CARA) that leverages both sequences of feedback and contextual information associated with the sequences to capture the users' dynamic preferences. Our proposed recurrent architecture consists of two types of gating mechanisms, namely 1) a contextual attention gate that controls the influence of the ordinary context on the users' contextual preferences and 2) a time- and geo-based gate that controls the influence of the hidden state from the previous checkin based on the transition context. Thorough experiments on three large checkin and rating datasets from commercial LBSNs demonstrate the effectiveness of our proposed CARA architecture by significantly outperforming many state-of-the-art RNN architectures and factorisation approaches

    Hybrid modeling, HMM/NN architectures, and protein applications

    Get PDF
    We describe a hybrid modeling approach where the parameters of a model are calculated and modulated by another model, typically a neural network (NN), to avoid both overfitting and underfitting. We develop the approach for the case of Hidden Markov Models (HMMs), by deriving a class of hybrid HMM/NN architectures. These architectures can be trained with unified algorithms that blend HMM dynamic programming with NN backpropagation. In the case of complex data, mixtures of HMMs or modulated HMMs must be used. NNs can then be applied both to the parameters of each single HMM, and to the switching or modulation of the models, as a function of input or context. Hybrid HMM/NN architectures provide a flexible NN parameterization for the control of model structure and complexity. At the same time, they can capture distributions that, in practice, are inaccessible to single HMMs. The HMM/NN hybrid approach is tested, in its simplest form, by constructing a model of the immunoglobulin protein family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs

    Transfer Learning for Neural Semantic Parsing

    Full text link
    The goal of semantic parsing is to map natural language to a machine interpretable meaning representation language (MRL). One of the constraints that limits full exploration of deep learning technologies for semantic parsing is the lack of sufficient annotation training data. In this paper, we propose using sequence-to-sequence in a multi-task setup for semantic parsing with a focus on transfer learning. We explore three multi-task architectures for sequence-to-sequence modeling and compare their performance with an independently trained model. Our experiments show that the multi-task setup aids transfer learning from an auxiliary task with large labeled data to a target task with smaller labeled data. We see absolute accuracy gains ranging from 1.0% to 4.4% in our in- house data set, and we also see good gains ranging from 2.5% to 7.0% on the ATIS semantic parsing tasks with syntactic and semantic auxiliary tasks.Comment: Accepted for ACL Repl4NLP 201
    • …
    corecore