687 research outputs found

    Learning to Separate Object Sounds by Watching Unlabeled Video

    Full text link
    Perceiving a scene most fully requires all the senses. Yet modeling how objects look and sound is challenging: most natural scenes and events contain multiple objects, and the audio track mixes all the sound sources together. We propose to learn audio-visual object models from unlabeled video, then exploit the visual context to perform audio source separation in novel videos. Our approach relies on a deep multi-instance multi-label learning framework to disentangle the audio frequency bases that map to individual visual objects, even without observing/hearing those objects in isolation. We show how the recovered disentangled bases can be used to guide audio source separation to obtain better-separated, object-level sounds. Our work is the first to learn audio source separation from large-scale "in the wild" videos containing multiple audio sources per video. We obtain state-of-the-art results on visually-aided audio source separation and audio denoising. Our video results: http://vision.cs.utexas.edu/projects/separating_object_sounds/Comment: Published in ECCV 2018; Project Page: http://vision.cs.utexas.edu/projects/separating_object_sounds

    The Sound of Motions

    Full text link
    Sounds originate from object motions and vibrations of surrounding air. Inspired by the fact that humans is capable of interpreting sound sources from how objects move visually, we propose a novel system that explicitly captures such motion cues for the task of sound localization and separation. Our system is composed of an end-to-end learnable model called Deep Dense Trajectory (DDT), and a curriculum learning scheme. It exploits the inherent coherence of audio-visual signals from a large quantities of unlabeled videos. Quantitative and qualitative evaluations show that comparing to previous models that rely on visual appearance cues, our motion based system improves performance in separating musical instrument sounds. Furthermore, it separates sound components from duets of the same category of instruments, a challenging problem that has not been addressed before

    Learning to Detect and Retrieve Objects from Unlabeled Videos

    Full text link
    Learning an object detector or retrieval requires a large data set with manual annotations. Such data sets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose to exploit the natural correlation in narrations and the visual presence of objects in video, to learn an object detector and retrieval without any manual labeling involved. We pose the problem as weakly supervised learning with noisy labels, and propose a novel object detection paradigm under these constraints. We handle the background rejection by using contrastive samples and confront the high level of label noise with a new clustering score. Our evaluation is based on a set of 11 manually annotated objects in over 5000 frames. We show comparison to a weakly-supervised approach as baseline and provide a strongly labeled upper bound.Comment: ICCV 2019 Workshop on Multi-modal Video Analysis and Moments in Time Challeng

    VisualEchoes: Spatial Image Representation Learning through Echolocation

    Full text link
    Several animal species (e.g., bats, dolphins, and whales) and even visually impaired humans have the remarkable ability to perform echolocation: a biological sonar used to perceive spatial layout and locate objects in the world. We explore the spatial cues contained in echoes and how they can benefit vision tasks that require spatial reasoning. First we capture echo responses in photo-realistic 3D indoor scene environments. Then we propose a novel interaction-based representation learning framework that learns useful visual features via echolocation. We show that the learned image features are useful for multiple downstream vision tasks requiring spatial reasoning---monocular depth estimation, surface normal estimation, and visual navigation---with results comparable or even better than heavily supervised pre-training. Our work opens a new path for representation learning for embodied agents, where supervision comes from interacting with the physical world.Comment: Appears in ECCV 202

    Identify, locate and separate: Audio-visual object extraction in large video collections using weak supervision

    Full text link
    We tackle the problem of audiovisual scene analysis for weakly-labeled data. To this end, we build upon our previous audiovisual representation learning framework to perform object classification in noisy acoustic environments and integrate audio source enhancement capability. This is made possible by a novel use of non-negative matrix factorization for the audio modality. Our approach is founded on the multiple instance learning paradigm. Its effectiveness is established through experiments over a challenging dataset of music instrument performance videos. We also show encouraging visual object localization results

    A Simple Baseline for Audio-Visual Scene-Aware Dialog

    Full text link
    The recently proposed audio-visual scene-aware dialog task paves the way to a more data-driven way of learning virtual assistants, smart speakers and car navigation systems. However, very little is known to date about how to effectively extract meaningful information from a plethora of sensors that pound the computational engine of those devices. Therefore, in this paper, we provide and carefully analyze a simple baseline for audio-visual scene-aware dialog which is trained end-to-end. Our method differentiates in a data-driven manner useful signals from distracting ones using an attention mechanism. We evaluate the proposed approach on the recently introduced and challenging audio-visual scene-aware dataset, and demonstrate the key features that permit to outperform the current state-of-the-art by more than 20\% on CIDEr.Comment: Accepted to CVPR 201

    Unsupervised Representation Learning by Sorting Sequences

    Full text link
    We present an unsupervised representation learning approach using videos without semantic labels. We leverage the temporal coherence as a supervisory signal by formulating representation learning as a sequence sorting task. We take temporally shuffled frames (i.e., in non-chronological order) as inputs and train a convolutional neural network to sort the shuffled sequences. Similar to comparison-based sorting algorithms, we propose to extract features from all frame pairs and aggregate them to predict the correct order. As sorting shuffled image sequence requires an understanding of the statistical temporal structure of images, training with such a proxy task allows us to learn rich and generalizable visual representation. We validate the effectiveness of the learned representation using our method as pre-training on high-level recognition problems. The experimental results show that our method compares favorably against state-of-the-art methods on action recognition, image classification and object detection tasks.Comment: ICCV 2017. Project page: http://vllab1.ucmerced.edu/~hylee/OPN

    Bootstrapping single-channel source separation via unsupervised spatial clustering on stereo mixtures

    Full text link
    Separating an audio scene into isolated sources is a fundamental problem in computer audition, analogous to image segmentation in visual scene analysis. Source separation systems based on deep learning are currently the most successful approaches for solving the underdetermined separation problem, where there are more sources than channels. Traditionally, such systems are trained on sound mixtures where the ground truth decomposition is already known. Since most real-world recordings do not have such a decomposition available, this limits the range of mixtures one can train on, and the range of mixtures the learned models may successfully separate. In this work, we use a simple blind spatial source separation algorithm to generate estimated decompositions of stereo mixtures. These estimates, together with a weighting scheme in the time-frequency domain, based on confidence in the separation quality, are used to train a deep learning model that can be used for single-channel separation, where no source direction information is available. This demonstrates how a simple cue such as the direction of origin of source can be used to bootstrap a model for source separation that can be used in situations where that cue is not available.Comment: 5 pages, 2 figure

    Learning to Localize Sound Sources in Visual Scenes: Analysis and Applications

    Full text link
    Visual events are usually accompanied by sounds in our daily lives. However, can the machines learn to correlate the visual scene and sound, as well as localize the sound source only by observing them like humans? To investigate its empirical learnability, in this work we first present a novel unsupervised algorithm to address the problem of localizing sound sources in visual scenes. In order to achieve this goal, a two-stream network structure which handles each modality with attention mechanism is developed for sound source localization. The network naturally reveals the localized response in the scene without human annotation. In addition, a new sound source dataset is developed for performance evaluation. Nevertheless, our empirical evaluation shows that the unsupervised method generates false conclusions in some cases. Thereby, we show that this false conclusion cannot be fixed without human prior knowledge due to the well-known correlation and causality mismatch misconception. To fix this issue, we extend our network to the supervised and semi-supervised network settings via a simple modification due to the general architecture of our two-stream network. We show that the false conclusions can be effectively corrected even with a small amount of supervision, i.e., semi-supervised setup. Furthermore, we present the versatility of the learned audio and visual embeddings on the cross-modal content alignment and we extend this proposed algorithm to a new application, sound saliency based automatic camera view panning in 360-degree{\deg} videos.Comment: To appear in TPAMI. arXiv admin note: substantial text overlap with arXiv:1803.0384

    VisualVoice: Audio-Visual Speech Separation with Cross-Modal Consistency

    Full text link
    We introduce a new approach for audio-visual speech separation. Given a video, the goal is to extract the speech associated with a face in spite of simultaneous background sounds and/or other human speakers. Whereas existing methods focus on learning the alignment between the speaker's lip movements and the sounds they generate, we propose to leverage the speaker's face appearance as an additional prior to isolate the corresponding vocal qualities they are likely to produce. Our approach jointly learns audio-visual speech separation and cross-modal speaker embeddings from unlabeled video. It yields state-of-the-art results on five benchmark datasets for audio-visual speech separation and enhancement, and generalizes well to challenging real-world videos of diverse scenarios. Our video results and code: http://vision.cs.utexas.edu/projects/VisualVoice/.Comment: In CVPR 2021. Project page: http://vision.cs.utexas.edu/projects/VisualVoice
    • …
    corecore