126,887 research outputs found

    Whole-Chain Recommendations

    Full text link
    With the recent prevalence of Reinforcement Learning (RL), there have been tremendous interests in developing RL-based recommender systems. In practical recommendation sessions, users will sequentially access multiple scenarios, such as the entrance pages and the item detail pages, and each scenario has its specific characteristics. However, the majority of existing RL-based recommender systems focus on optimizing one strategy for all scenarios or separately optimizing each strategy, which could lead to sub-optimal overall performance. In this paper, we study the recommendation problem with multiple (consecutive) scenarios, i.e., whole-chain recommendations. We propose a multi-agent RL-based approach (DeepChain), which can capture the sequential correlation among different scenarios and jointly optimize multiple recommendation strategies. To be specific, all recommender agents (RAs) share the same memory of users' historical behaviors, and they work collaboratively to maximize the overall reward of a session. Note that optimizing multiple recommendation strategies jointly faces two challenges in the existing model-free RL model - (i) it requires huge amounts of user behavior data, and (ii) the distribution of reward (users' feedback) are extremely unbalanced. In this paper, we introduce model-based RL techniques to reduce the training data requirement and execute more accurate strategy updates. The experimental results based on a real e-commerce platform demonstrate the effectiveness of the proposed framework.Comment: 29th ACM International Conference on Information and Knowledge Managemen

    Let Knowledge Make Recommendations For You

    Get PDF
    The knowledge graph can make more accurate personalized recommendations for the recommendation system, but it is also interpretative and has traces to follow. The purpose of the recommendation system is to recommend a series of unobserved items for users. At present, recommendation systems based on knowledge graphs are mainly implemented in two ways: Embedding-based and path based. Embedding methods usually directly use information from the knowledge graph to enrich the representation of an item or user. Still, it failed to introduce multi-hop relations, and it is challenging to use semantic network information. A path-based recommendation algorithm utilizes the knowledge graph to gain multi-hop knowledge and compare the similarity between users or items to improve the recommendation effect. This paper (1) Aiming at the problem of how the recommendation algorithm effectively utilizes the semantically related information of knowledge, a self-attention-based knowledge representation learning model is designed to learn the semantic information of the entity-relationship by using the overall triplet of the entity-relationship to achieve high-quality knowledge features, Which brings more and more helpful information to the recommendation. (2) Constructing a content recommendation model with unified, embedded behavior and knowledge features, using historical user preferences combined with knowledge graphs to dynamically learn knowledge features to bring users more accurate and diverse recommendations. (3) Aiming at the problem of knowledge feature representation learning, a self-attention based knowledge representation learning model is proposed. Focusing on the difference in the importance of triples for determining entity semantics, the self-attention mechanism is used to learn semantics from triples to improve knowledge features. The quality of the representation provides high-quality auxiliary information for the recommendation system. The model’s performance is demonstrated through link prediction and triple classification experiments to prove the feasibility of the method proposed in this article

    Diverse personalized recommendations with uncertainty from implicit preference data with the Bayesian Mallows Model

    Full text link
    Clicking data, which exists in abundance and contains objective user preference information, is widely used to produce personalized recommendations in web-based applications. Current popular recommendation algorithms, typically based on matrix factorizations, often have high accuracy and achieve good clickthrough rates. However, diversity of the recommended items, which can greatly enhance user experiences, is often overlooked. Moreover, most algorithms do not produce interpretable uncertainty quantifications of the recommendations. In this work, we propose the Bayesian Mallows for Clicking Data (BMCD) method, which augments clicking data into compatible full ranking vectors by enforcing all the clicked items to be top-ranked. User preferences are learned using a Mallows ranking model. Bayesian inference leads to interpretable uncertainties of each individual recommendation, and we also propose a method to make personalized recommendations based on such uncertainties. With a simulation study and a real life data example, we demonstrate that compared to state-of-the-art matrix factorization, BMCD makes personalized recommendations with similar accuracy, while achieving much higher level of diversity, and producing interpretable and actionable uncertainty estimation.Comment: 27 page

    Personalized Video Recommendation Using Rich Contents from Videos

    Full text link
    Video recommendation has become an essential way of helping people explore the massive videos and discover the ones that may be of interest to them. In the existing video recommender systems, the models make the recommendations based on the user-video interactions and single specific content features. When the specific content features are unavailable, the performance of the existing models will seriously deteriorate. Inspired by the fact that rich contents (e.g., text, audio, motion, and so on) exist in videos, in this paper, we explore how to use these rich contents to overcome the limitations caused by the unavailability of the specific ones. Specifically, we propose a novel general framework that incorporates arbitrary single content feature with user-video interactions, named as collaborative embedding regression (CER) model, to make effective video recommendation in both in-matrix and out-of-matrix scenarios. Our extensive experiments on two real-world large-scale datasets show that CER beats the existing recommender models with any single content feature and is more time efficient. In addition, we propose a priority-based late fusion (PRI) method to gain the benefit brought by the integrating the multiple content features. The corresponding experiment shows that PRI brings real performance improvement to the baseline and outperforms the existing fusion methods

    A probabilistic model to resolve diversity-accuracy challenge of recommendation systems

    Full text link
    Recommendation systems have wide-spread applications in both academia and industry. Traditionally, performance of recommendation systems has been measured by their precision. By introducing novelty and diversity as key qualities in recommender systems, recently increasing attention has been focused on this topic. Precision and novelty of recommendation are not in the same direction, and practical systems should make a trade-off between these two quantities. Thus, it is an important feature of a recommender system to make it possible to adjust diversity and accuracy of the recommendations by tuning the model. In this paper, we introduce a probabilistic structure to resolve the diversity-accuracy dilemma in recommender systems. We propose a hybrid model with adjustable level of diversity and precision such that one can perform this by tuning a single parameter. The proposed recommendation model consists of two models: one for maximization of the accuracy and the other one for specification of the recommendation list to tastes of users. Our experiments on two real datasets show the functionality of the model in resolving accuracy-diversity dilemma and outperformance of the model over other classic models. The proposed method could be extensively applied to real commercial systems due to its low computational complexity and significant performance.Comment: 19 pages, 5 figure

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports
    • …
    corecore