173,494 research outputs found

    Learning to Rank from Samples of Variable Quality

    Get PDF
    Training deep neural networks requires many training samples, but in practice, training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality-versus quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we introduce "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on document ranking where we outperform state-of-the-art alternative semi-supervised methods.Comment: Presented at The First International SIGIR2016 Workshop on Learning From Limited Or Noisy Data For Information Retrieval. arXiv admin note: substantial text overlap with arXiv:1711.0279

    Understanding Compressive Adversarial Privacy

    Full text link
    Designing a data sharing mechanism without sacrificing too much privacy can be considered as a game between data holders and malicious attackers. This paper describes a compressive adversarial privacy framework that captures the trade-off between the data privacy and utility. We characterize the optimal data releasing mechanism through convex optimization when assuming that both the data holder and attacker can only modify the data using linear transformations. We then build a more realistic data releasing mechanism that can rely on a nonlinear compression model while the attacker uses a neural network. We demonstrate in a series of empirical applications that this framework, consisting of compressive adversarial privacy, can preserve sensitive information
    • …
    corecore