3,271 research outputs found

    Generative Adversarial Networks for Mitigating Biases in Machine Learning Systems

    Full text link
    In this paper, we propose a new framework for mitigating biases in machine learning systems. The problem of the existing mitigation approaches is that they are model-oriented in the sense that they focus on tuning the training algorithms to produce fair results, while overlooking the fact that the training data can itself be the main reason for biased outcomes. Technically speaking, two essential limitations can be found in such model-based approaches: 1) the mitigation cannot be achieved without degrading the accuracy of the machine learning models, and 2) when the data used for training are largely biased, the training time automatically increases so as to find suitable learning parameters that help produce fair results. To address these shortcomings, we propose in this work a new framework that can largely mitigate the biases and discriminations in machine learning systems while at the same time enhancing the prediction accuracy of these systems. The proposed framework is based on conditional Generative Adversarial Networks (cGANs), which are used to generate new synthetic fair data with selective properties from the original data. We also propose a framework for analyzing data biases, which is important for understanding the amount and type of data that need to be synthetically sampled and labeled for each population group. Experimental results show that the proposed solution can efficiently mitigate different types of biases, while at the same time enhancing the prediction accuracy of the underlying machine learning model

    A Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts

    Full text link
    Most existing zero-shot learning methods consider the problem as a visual semantic embedding one. Given the demonstrated capability of Generative Adversarial Networks(GANs) to generate images, we instead leverage GANs to imagine unseen categories from text descriptions and hence recognize novel classes with no examples being seen. Specifically, we propose a simple yet effective generative model that takes as input noisy text descriptions about an unseen class (e.g.Wikipedia articles) and generates synthesized visual features for this class. With added pseudo data, zero-shot learning is naturally converted to a traditional classification problem. Additionally, to preserve the inter-class discrimination of the generated features, a visual pivot regularization is proposed as an explicit supervision. Unlike previous methods using complex engineered regularizers, our approach can suppress the noise well without additional regularization. Empirically, we show that our method consistently outperforms the state of the art on the largest available benchmarks on Text-based Zero-shot Learning.Comment: To appear in CVPR1

    Adversarial Domain Adaptation for Duplicate Question Detection

    Full text link
    We address the problem of detecting duplicate questions in forums, which is an important step towards automating the process of answering new questions. As finding and annotating such potential duplicates manually is very tedious and costly, automatic methods based on machine learning are a viable alternative. However, many forums do not have annotated data, i.e., questions labeled by experts as duplicates, and thus a promising solution is to use domain adaptation from another forum that has such annotations. Here we focus on adversarial domain adaptation, deriving important findings about when it performs well and what properties of the domains are important in this regard. Our experiments with StackExchange data show an average improvement of 5.6% over the best baseline across multiple pairs of domains.Comment: EMNLP 2018 short paper - camera ready. 8 page

    Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks

    Full text link
    Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that appeared at CAV 201
    corecore