269 research outputs found

    Dependency Parsing with Dilated Iterated Graph CNNs

    Full text link
    Dependency parses are an effective way to inject linguistic knowledge into many downstream tasks, and many practitioners wish to efficiently parse sentences at scale. Recent advances in GPU hardware have enabled neural networks to achieve significant gains over the previous best models, these models still fail to leverage GPUs' capability for massive parallelism due to their requirement of sequential processing of the sentence. In response, we propose Dilated Iterated Graph Convolutional Neural Networks (DIG-CNNs) for graph-based dependency parsing, a graph convolutional architecture that allows for efficient end-to-end GPU parsing. In experiments on the English Penn TreeBank benchmark, we show that DIG-CNNs perform on par with some of the best neural network parsers.Comment: 2nd Workshop on Structured Prediction for Natural Language Processing (at EMNLP '17

    Interpretable Structure-Evolving LSTM

    Full text link
    This paper develops a general framework for learning interpretable data representation via Long Short-Term Memory (LSTM) recurrent neural networks over hierarchal graph structures. Instead of learning LSTM models over the pre-fixed structures, we propose to further learn the intermediate interpretable multi-level graph structures in a progressive and stochastic way from data during the LSTM network optimization. We thus call this model the structure-evolving LSTM. In particular, starting with an initial element-level graph representation where each node is a small data element, the structure-evolving LSTM gradually evolves the multi-level graph representations by stochastically merging the graph nodes with high compatibilities along the stacked LSTM layers. In each LSTM layer, we estimate the compatibility of two connected nodes from their corresponding LSTM gate outputs, which is used to generate a merging probability. The candidate graph structures are accordingly generated where the nodes are grouped into cliques with their merging probabilities. We then produce the new graph structure with a Metropolis-Hasting algorithm, which alleviates the risk of getting stuck in local optimums by stochastic sampling with an acceptance probability. Once a graph structure is accepted, a higher-level graph is then constructed by taking the partitioned cliques as its nodes. During the evolving process, representation becomes more abstracted in higher-levels where redundant information is filtered out, allowing more efficient propagation of long-range data dependencies. We evaluate the effectiveness of structure-evolving LSTM in the application of semantic object parsing and demonstrate its advantage over state-of-the-art LSTM models on standard benchmarks.Comment: To appear in CVPR 2017 as a spotlight pape

    Learning static object segmentation from motion segmentation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 105-110).This thesis describes the SANE (Segmentation According to Natural Examples) algorithm for learning to segment objects in static images from video data. SANE uses background subtraction to find the segmentation of moving objects in videos. This provides object segmentation information for each video frame. The collection of frames and segmentations forms a training set that SANE uses to learn the image and shape properties that correspond to the observed motion boundaries. Then, when presented with new static images, the model infers segmentations similar to the observed motion segmentations. SANE is a general method for learning environment-specific segmentation models. Because it is self-supervised, it can adapt to a new environment and new objects with relative ease. Comparisons of its output to a leading image segmentation algorithm demonstrate that motion-defined object segmentation is a distinct problem from traditional image segmentation. The model outperforms a trained local boundary detector because it leverages the shape information it learned from the training data.by Michael Gregory Ross.Ph.D
    • …
    corecore