2,470 research outputs found

    Multiple chaotic central pattern generators with learning for legged locomotion and malfunction compensation

    Full text link
    An originally chaotic system can be controlled into various periodic dynamics. When it is implemented into a legged robot's locomotion control as a central pattern generator (CPG), sophisticated gait patterns arise so that the robot can perform various walking behaviors. However, such a single chaotic CPG controller has difficulties dealing with leg malfunction. Specifically, in the scenarios presented here, its movement permanently deviates from the desired trajectory. To address this problem, we extend the single chaotic CPG to multiple CPGs with learning. The learning mechanism is based on a simulated annealing algorithm. In a normal situation, the CPGs synchronize and their dynamics are identical. With leg malfunction or disability, the CPGs lose synchronization leading to independent dynamics. In this case, the learning mechanism is applied to automatically adjust the remaining legs' oscillation frequencies so that the robot adapts its locomotion to deal with the malfunction. As a consequence, the trajectory produced by the multiple chaotic CPGs resembles the original trajectory far better than the one produced by only a single CPG. The performance of the system is evaluated first in a physical simulation of a quadruped as well as a hexapod robot and finally in a real six-legged walking machine called AMOSII. The experimental results presented here reveal that using multiple CPGs with learning is an effective approach for adaptive locomotion generation where, for instance, different body parts have to perform independent movements for malfunction compensation.Comment: 48 pages, 16 figures, Information Sciences 201

    Roombots -- Mechanical Design of Self-Reconfiguring Modular Robots for Adaptive Furniture

    Get PDF
    We aim at merging technologies from information technology, roomware, and robotics in order to design adaptive and intelligent furniture. This paper presents design principles for our modular robots, called Roombots, as future building blocks for furniture that moves and self-reconfigures. The reconfiguration is done using dynamic connection and disconnection of modules and rotations of the degrees of freedom. We are furthermore interested in applying Roombots towards adaptive behaviour, such as online learning of locomotion patterns. To create coordinated and efficient gait patterns, we use a Central Pattern Generator (CPG) approach, which can easily be optimized by any gradient-free optimization algorithm. To provide a hardware framework we present the mechanical design of the Roombots modules and an active connection mechanism based on physical latches. Further we discuss the application of our Roombots modules as pieces of a homogenic or heterogenic mix of building blocks for static structures

    Learning directed locomotion in modular robots with evolvable morphologies

    Get PDF
    The vision behind this paper looks ahead to evolutionary robot systems where morphologies and controllers are evolved together and ‘newborn’ robots undergo a learning process to optimize their inherited brain for the inherited body. The specific problem we address is learning controllers for the task of directed locomotion in evolvable modular robots. To this end, we present a test suite of robots with different shapes and sizes and compare two learning algorithms, Bayesian optimization and HyperNEAT. The experiments in simulation show that both methods obtain good controllers, but Bayesian optimization is more effective and sample efficient. We validate the best learned controllers by constructing three robots from the test suite in the real world and observe their fitness and actual trajectories. The obtained results indicate a reality gap, but overall the trajectories are adequate and follow the target directions successfully

    Locomotion Gait Optimization For Modular Robots; Coevolving Morphology and Control

    Get PDF
    This study aims at providing a control-learning framework capable of generating optimal locomotion patterns for the modular robots. The key ideas are firstly to provide a generic control structure that can be well-adapted for the different morphologies and secondly to exploit and coevolve both morphology and control aspects. A generic framework combining robot morphology, control and environment and on the top of them optimization and evolutionary algorithms are presented. The details of the components and some of the preliminary results are discussed. (C) Selection and peer-review under responsibility of FET11 conference organizers and published by Elsevier B.V

    Improving RL Power for On-Line Evolution of Gaits in Modular Robots

    Get PDF
    This paper addresses the problem of on-line gait learning in modular robots whose shape is not known in advance. The best algorithm for this problem known to us is a reinforcement learning method, called RL PoWER. In this study we revisit the original RL PoWER algorithm and observe that in essence it is a specific evolutionary algorithm. Based on this insight we propose two modifications of the main search operators and compare the quality of the evolved gaits when either or both of these modified operators are employed. The results show that using 2-parent crossover as well as mutation with self- adaptive step-sizes can significantly improve the performance of the original algorithm
    corecore