12,545 research outputs found

    Exploring applications of deep reinforcement learning for real-world autonomous driving systems

    Full text link
    Deep Reinforcement Learning (DRL) has become increasingly powerful in recent years, with notable achievements such as Deepmind's AlphaGo. It has been successfully deployed in commercial vehicles like Mobileye's path planning system. However, a vast majority of work on DRL is focused on toy examples in controlled synthetic car simulator environments such as TORCS and CARLA. In general, DRL is still at its infancy in terms of usability in real-world applications. Our goal in this paper is to encourage real-world deployment of DRL in various autonomous driving (AD) applications. We first provide an overview of the tasks in autonomous driving systems, reinforcement learning algorithms and applications of DRL to AD systems. We then discuss the challenges which must be addressed to enable further progress towards real-world deployment.Comment: Accepted for Oral Presentation at VISAPP 201

    Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards

    Full text link
    We propose a general and model-free approach for Reinforcement Learning (RL) on real robotics with sparse rewards. We build upon the Deep Deterministic Policy Gradient (DDPG) algorithm to use demonstrations. Both demonstrations and actual interactions are used to fill a replay buffer and the sampling ratio between demonstrations and transitions is automatically tuned via a prioritized replay mechanism. Typically, carefully engineered shaping rewards are required to enable the agents to efficiently explore on high dimensional control problems such as robotics. They are also required for model-based acceleration methods relying on local solvers such as iLQG (e.g. Guided Policy Search and Normalized Advantage Function). The demonstrations replace the need for carefully engineered rewards, and reduce the exploration problem encountered by classical RL approaches in these domains. Demonstrations are collected by a robot kinesthetically force-controlled by a human demonstrator. Results on four simulated insertion tasks show that DDPG from demonstrations out-performs DDPG, and does not require engineered rewards. Finally, we demonstrate the method on a real robotics task consisting of inserting a clip (flexible object) into a rigid object

    Randomized Value Functions via Multiplicative Normalizing Flows

    Full text link
    Randomized value functions offer a promising approach towards the challenge of efficient exploration in complex environments with high dimensional state and action spaces. Unlike traditional point estimate methods, randomized value functions maintain a posterior distribution over action-space values. This prevents the agent's behavior policy from prematurely exploiting early estimates and falling into local optima. In this work, we leverage recent advances in variational Bayesian neural networks and combine these with traditional Deep Q-Networks (DQN) and Deep Deterministic Policy Gradient (DDPG) to achieve randomized value functions for high-dimensional domains. In particular, we augment DQN and DDPG with multiplicative normalizing flows in order to track a rich approximate posterior distribution over the parameters of the value function. This allows the agent to perform approximate Thompson sampling in a computationally efficient manner via stochastic gradient methods. We demonstrate the benefits of our approach through an empirical comparison in high dimensional environments

    Deep Generative Models with Learnable Knowledge Constraints

    Full text link
    The broad set of deep generative models (DGMs) has achieved remarkable advances. However, it is often difficult to incorporate rich structured domain knowledge with the end-to-end DGMs. Posterior regularization (PR) offers a principled framework to impose structured constraints on probabilistic models, but has limited applicability to the diverse DGMs that can lack a Bayesian formulation or even explicit density evaluation. PR also requires constraints to be fully specified a priori, which is impractical or suboptimal for complex knowledge with learnable uncertain parts. In this paper, we establish mathematical correspondence between PR and reinforcement learning (RL), and, based on the connection, expand PR to learn constraints as the extrinsic reward in RL. The resulting algorithm is model-agnostic to apply to any DGMs, and is flexible to adapt arbitrary constraints with the model jointly. Experiments on human image generation and templated sentence generation show models with learned knowledge constraints by our algorithm greatly improve over base generative models.Comment: Neural Information Processing Systems (NeurIPS) 201

    Deep Reinforcement Learning for Autonomous Driving

    Full text link
    Reinforcement learning has steadily improved and outperform human in lots of traditional games since the resurgence of deep neural network. However, these success is not easy to be copied to autonomous driving because the state spaces in real world are extreme complex and action spaces are continuous and fine control is required. Moreover, the autonomous driving vehicles must also keep functional safety under the complex environments. To deal with these challenges, we first adopt the deep deterministic policy gradient (DDPG) algorithm, which has the capacity to handle complex state and action spaces in continuous domain. We then choose The Open Racing Car Simulator (TORCS) as our environment to avoid physical damage. Meanwhile, we select a set of appropriate sensor information from TORCS and design our own rewarder. In order to fit DDPG algorithm to TORCS, we design our network architecture for both actor and critic inside DDPG paradigm. To demonstrate the effectiveness of our model, We evaluate on different modes in TORCS and show both quantitative and qualitative results.Comment: no time for further improvemen

    Parameter Sharing Reinforcement Learning Architecture for Multi Agent Driving Behaviors

    Full text link
    Multi-agent learning provides a potential framework for learning and simulating traffic behaviors. This paper proposes a novel architecture to learn multiple driving behaviors in a traffic scenario. The proposed architecture can learn multiple behaviors independently as well as simultaneously. We take advantage of the homogeneity of agents and learn in a parameter sharing paradigm. To further speed up the training process asynchronous updates are employed into the architecture. While learning different behaviors simultaneously, the given framework was also able to learn cooperation between the agents, without any explicit communication. We applied this framework to learn two important behaviors in driving: 1) Lane-Keeping and 2) Over-Taking. Results indicate faster convergence and learning of a more generic behavior, that is scalable to any number of agents. When compared the results with existing approaches, our results indicate equal and even better performance in some cases

    InfoGAIL: Interpretable Imitation Learning from Visual Demonstrations

    Full text link
    The goal of imitation learning is to mimic expert behavior without access to an explicit reward signal. Expert demonstrations provided by humans, however, often show significant variability due to latent factors that are typically not explicitly modeled. In this paper, we propose a new algorithm that can infer the latent structure of expert demonstrations in an unsupervised way. Our method, built on top of Generative Adversarial Imitation Learning, can not only imitate complex behaviors, but also learn interpretable and meaningful representations of complex behavioral data, including visual demonstrations. In the driving domain, we show that a model learned from human demonstrations is able to both accurately reproduce a variety of behaviors and accurately anticipate human actions using raw visual inputs. Compared with various baselines, our method can better capture the latent structure underlying expert demonstrations, often recovering semantically meaningful factors of variation in the data.Comment: 14 pages, NIPS 201

    Challenges of Real-World Reinforcement Learning

    Full text link
    Reinforcement learning (RL) has proven its worth in a series of artificial domains, and is beginning to show some successes in real-world scenarios. However, much of the research advances in RL are often hard to leverage in real-world systems due to a series of assumptions that are rarely satisfied in practice. We present a set of nine unique challenges that must be addressed to productionize RL to real world problems. For each of these challenges, we specify the exact meaning of the challenge, present some approaches from the literature, and specify some metrics for evaluating that challenge. An approach that addresses all nine challenges would be applicable to a large number of real world problems. We also present an example domain that has been modified to present these challenges as a testbed for practical RL research

    Formulation of Deep Reinforcement Learning Architecture Toward Autonomous Driving for On-Ramp Merge

    Full text link
    Multiple automakers have in development or in production automated driving systems (ADS) that offer freeway-pilot functions. This type of ADS is typically limited to restricted-access freeways only, that is, the transition from manual to automated modes takes place only after the ramp merging process is completed manually. One major challenge to extend the automation to ramp merging is that the automated vehicle needs to incorporate and optimize long-term objectives (e.g. successful and smooth merge) when near-term actions must be safely executed. Moreover, the merging process involves interactions with other vehicles whose behaviors are sometimes hard to predict but may influence the merging vehicle optimal actions. To tackle such a complicated control problem, we propose to apply Deep Reinforcement Learning (DRL) techniques for finding an optimal driving policy by maximizing the long-term reward in an interactive environment. Specifically, we apply a Long Short-Term Memory (LSTM) architecture to model the interactive environment, from which an internal state containing historical driving information is conveyed to a Deep Q-Network (DQN). The DQN is used to approximate the Q-function, which takes the internal state as input and generates Q-values as output for action selection. With this DRL architecture, the historical impact of interactive environment on the long-term reward can be captured and taken into account for deciding the optimal control policy. The proposed architecture has the potential to be extended and applied to other autonomous driving scenarios such as driving through a complex intersection or changing lanes under varying traffic flow conditions.Comment: IEEE International Conference on Intelligent Transportation Systems, Yokohama, Japan, 201

    Bayesian policy selection using active inference

    Full text link
    Learning to take actions based on observations is a core requirement for artificial agents to be able to be successful and robust at their task. Reinforcement Learning (RL) is a well-known technique for learning such policies. However, current RL algorithms often have to deal with reward shaping, have difficulties generalizing to other environments and are most often sample inefficient. In this paper, we explore active inference and the free energy principle, a normative theory from neuroscience that explains how self-organizing biological systems operate by maintaining a model of the world and casting action selection as an inference problem. We apply this concept to a typical problem known to the RL community, the mountain car problem, and show how active inference encompasses both RL and learning from demonstrations.Comment: ICLR 2019 Workshop on Structure & priors in reinforcement learnin
    • …
    corecore