5,518 research outputs found

    Increasing the Action Gap: New Operators for Reinforcement Learning

    Full text link
    This paper introduces new optimality-preserving operators on Q-functions. We first describe an operator for tabular representations, the consistent Bellman operator, which incorporates a notion of local policy consistency. We show that this local consistency leads to an increase in the action gap at each state; increasing this gap, we argue, mitigates the undesirable effects of approximation and estimation errors on the induced greedy policies. This operator can also be applied to discretized continuous space and time problems, and we provide empirical results evidencing superior performance in this context. Extending the idea of a locally consistent operator, we then derive sufficient conditions for an operator to preserve optimality, leading to a family of operators which includes our consistent Bellman operator. As corollaries we provide a proof of optimality for Baird's advantage learning algorithm and derive other gap-increasing operators with interesting properties. We conclude with an empirical study on 60 Atari 2600 games illustrating the strong potential of these new operators

    A Benchmark Environment Motivated by Industrial Control Problems

    Full text link
    In the research area of reinforcement learning (RL), frequently novel and promising methods are developed and introduced to the RL community. However, although many researchers are keen to apply their methods on real-world problems, implementing such methods in real industry environments often is a frustrating and tedious process. Generally, academic research groups have only limited access to real industrial data and applications. For this reason, new methods are usually developed, evaluated and compared by using artificial software benchmarks. On one hand, these benchmarks are designed to provide interpretable RL training scenarios and detailed insight into the learning process of the method on hand. On the other hand, they usually do not share much similarity with industrial real-world applications. For this reason we used our industry experience to design a benchmark which bridges the gap between freely available, documented, and motivated artificial benchmarks and properties of real industrial problems. The resulting industrial benchmark (IB) has been made publicly available to the RL community by publishing its Java and Python code, including an OpenAI Gym wrapper, on Github. In this paper we motivate and describe in detail the IB's dynamics and identify prototypic experimental settings that capture common situations in real-world industry control problems

    A Benchmark Environment Motivated by Industrial Control Problems

    Full text link
    In the research area of reinforcement learning (RL), frequently novel and promising methods are developed and introduced to the RL community. However, although many researchers are keen to apply their methods on real-world problems, implementing such methods in real industry environments often is a frustrating and tedious process. Generally, academic research groups have only limited access to real industrial data and applications. For this reason, new methods are usually developed, evaluated and compared by using artificial software benchmarks. On one hand, these benchmarks are designed to provide interpretable RL training scenarios and detailed insight into the learning process of the method on hand. On the other hand, they usually do not share much similarity with industrial real-world applications. For this reason we used our industry experience to design a benchmark which bridges the gap between freely available, documented, and motivated artificial benchmarks and properties of real industrial problems. The resulting industrial benchmark (IB) has been made publicly available to the RL community by publishing its Java and Python code, including an OpenAI Gym wrapper, on Github. In this paper we motivate and describe in detail the IB's dynamics and identify prototypic experimental settings that capture common situations in real-world industry control problems

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    Learning from Outside the Viability Kernel: Why we Should Build Robots that can Fall with Grace

    Full text link
    Despite impressive results using reinforcement learning to solve complex problems from scratch, in robotics this has still been largely limited to model-based learning with very informative reward functions. One of the major challenges is that the reward landscape often has large patches with no gradient, making it difficult to sample gradients effectively. We show here that the robot state-initialization can have a more important effect on the reward landscape than is generally expected. In particular, we show the counter-intuitive benefit of including initializations that are unviable, in other words initializing in states that are doomed to fail.Comment: Proceedings of the 2018 IEEE International Conference on SImulation, Modeling and Programming for Autonomous Robots (SIMPAR), Brisbane, Australia, 16-19 201
    • …
    corecore