1,977 research outputs found

    D2-Net: A Trainable CNN for Joint Detection and Description of Local Features

    Full text link
    In this work we address the problem of finding reliable pixel-level correspondences under difficult imaging conditions. We propose an approach where a single convolutional neural network plays a dual role: It is simultaneously a dense feature descriptor and a feature detector. By postponing the detection to a later stage, the obtained keypoints are more stable than their traditional counterparts based on early detection of low-level structures. We show that this model can be trained using pixel correspondences extracted from readily available large-scale SfM reconstructions, without any further annotations. The proposed method obtains state-of-the-art performance on both the difficult Aachen Day-Night localization dataset and the InLoc indoor localization benchmark, as well as competitive performance on other benchmarks for image matching and 3D reconstruction.Comment: Accepted at CVPR 201

    Detect-and-Track: Efficient Pose Estimation in Videos

    Full text link
    This paper addresses the problem of estimating and tracking human body keypoints in complex, multi-person video. We propose an extremely lightweight yet highly effective approach that builds upon the latest advancements in human detection and video understanding. Our method operates in two-stages: keypoint estimation in frames or short clips, followed by lightweight tracking to generate keypoint predictions linked over the entire video. For frame-level pose estimation we experiment with Mask R-CNN, as well as our own proposed 3D extension of this model, which leverages temporal information over small clips to generate more robust frame predictions. We conduct extensive ablative experiments on the newly released multi-person video pose estimation benchmark, PoseTrack, to validate various design choices of our model. Our approach achieves an accuracy of 55.2% on the validation and 51.8% on the test set using the Multi-Object Tracking Accuracy (MOTA) metric, and achieves state of the art performance on the ICCV 2017 PoseTrack keypoint tracking challenge.Comment: In CVPR 2018. Ranked first in ICCV 2017 PoseTrack challenge (keypoint tracking in videos). Code: https://github.com/facebookresearch/DetectAndTrack and webpage: https://rohitgirdhar.github.io/DetectAndTrack

    Video Logo Retrieval based on local Features

    Full text link
    Estimation of the frequency and duration of logos in videos is important and challenging in the advertisement industry as a way of estimating the impact of ad purchases. Since logos occupy only a small area in the videos, the popular methods of image retrieval could fail. This paper develops an algorithm called Video Logo Retrieval (VLR), which is an image-to-video retrieval algorithm based on the spatial distribution of local image descriptors that measure the distance between the query image (the logo) and a collection of video images. VLR uses local features to overcome the weakness of global feature-based models such as convolutional neural networks (CNN). Meanwhile, VLR is flexible and does not require training after setting some hyper-parameters. The performance of VLR is evaluated on two challenging open benchmark tasks (SoccerNet and Standford I2V), and compared with other state-of-the-art logo retrieval or detection algorithms. Overall, VLR shows significantly higher accuracy compared with the existing methods.Comment: Accepted by ICIP 20. Contact author: Bochen Guan ([email protected]

    Comparator Networks

    Full text link
    The objective of this work is set-based verification, e.g. to decide if two sets of images of a face are of the same person or not. The traditional approach to this problem is to learn to generate a feature vector per image, aggregate them into one vector to represent the set, and then compute the cosine similarity between sets. Instead, we design a neural network architecture that can directly learn set-wise verification. Our contributions are: (i) We propose a Deep Comparator Network (DCN) that can ingest a pair of sets (each may contain a variable number of images) as inputs, and compute a similarity between the pair--this involves attending to multiple discriminative local regions (landmarks), and comparing local descriptors between pairs of faces; (ii) To encourage high-quality representations for each set, internal competition is introduced for recalibration based on the landmark score; (iii) Inspired by image retrieval, a novel hard sample mining regime is proposed to control the sampling process, such that the DCN is complementary to the standard image classification models. Evaluations on the IARPA Janus face recognition benchmarks show that the comparator networks outperform the previous state-of-the-art results by a large margin.Comment: To appear in ECCV 201
    • …
    corecore