964 research outputs found

    Design and development of safety systems for high frequency inductive power transfer

    Get PDF
    As wireless charging is gaining its popularity among consumer electronics, e.g., phones, smart wearables, electric toothbrushes, etc., there has been a trend of expanding this technology into a wider range of applications e.g. drones, robots, electric vehicles etc.. To achieve this, both the charging power and range need to be increased. This thesis discusses the limitations of widely used kHz inductive power transfer systems and emphasises the challenge of deploying into a wider range of applications. High-frequency inductive power transfer (HF-IPT) systems are then discussed with two real-world applications presented to showcase HF-IPT’s potential over kHz IPT systems. Some of the benefits of the HF-IPT, e.g., the large air gap and tolerance to misalignment, could increase the chances for live or other unintended objects to be coupled into the wireless charging system, which could cause safety hazards if the system was not designed carefully. This thesis, therefore, focuses on the safety systems design and development for HF-IPT systems. A number of existing and potential foreign and live object detection methods (FOD/LOD) including a new FOD/LOD method based on reflected impedance are introduced. The proposed method can operate without additional sensors, and without a communication link between IPT transmitter and receiver. A detection accuracy of 95% is achieved by implementing such FOD/LOD method. In addition, a FOD/LOD technique based on a mmWave radar sensor is also introduced. Differing from typical radar applications, the proposed method leverages machine learning techniques to perform object recognition to reduce the false detection rate. The developed FOD/LOD system could classify six different charging scenarios with an average accuracy of 96%. For applications that do not involve any live or unintended objects, this thesis also introduces a localisation technique based on the IPT system to help guide a drone or robot to a specific location e.g. a wireless charging point. Such a system was designed to reduce the risk of charging by minimising human’s involvement.Open Acces

    Antenna Development for Radio Frequency Hyperthermia Applications

    Get PDF
    This thesis deals with the design steps, development and validation of an applicator for radio frequency hyperthermia cancer therapy. An applicator design to enhance targeted energy coupling is a key enabler for preferential temperature increments in tumour regions. A single-element, near-field approach requires a miniaturised solution, that addresses ergonomic needs and is tolerant to patient anatomy. The antenna war-field rriodality and the high-dielectric patient loading introduce significant analytical and computational resource challenges. The antenna input impedance has to be sufficiently insensitive to in-band resonant cletuning and the fields in the tissue can he targeted to selected areas in the patient. An introduction to the medical and biological background of hyperthermia is presented. The design requirements of antennas for medical and in particular for hyperthermia applications are highlighted. Starting from a conventional circular patch, the antenna evolved into a compact circular patch with a concentric annular ring and slotted groundplane, operating at the 434 MHz Industrial Scientific and Medical frequency band. Feed point location is optimized for an energy deposition pattern aligned with the antenna centre. The applicator is assessed with other published approaches and clinically used loop, dipole and square patch antennas. The antennas are evaluated for the unloaded condition and when loaded with a tri-layer body tissue numerical model. This model comprises skin, fat and transverse fiber of muscle of variable thicknesses to account for different body locations and patient. anatomy. A waterbolus containing de-ionized water is added at the skin interface for superficial tissue cooling aud antelina matching. The proposed applicator achieves a penetration depth that supersedes other approaches while remaining compact and an ergonomic fit to tumour areas on the body. To consider the inner and peripheral complex shapes of human bodies, the full human body numerical model developed by Remcom is used. This model was segmented from 1 mm step computed tomography (CT) and magnetic resonance imaging (MRI) cross-sections through and adult male and it comprises twenty-three tissue types with thermal and frequency-dependent dielectric properties. The applicator performance is evaluated at three anatomical body areas of the model to assess its suitability for treatment of tumours at different locations. These three anatomical regions present different aperture coupling and tissue composition. \u27Different conformal waterbolus and air gap thickness values are evaluated. The models used in this work are validated with measurements performed in a phantom containing a lossy liquid with dielectric properties representative of homogeneous human body tissue. The dosimetric assessment system (DASY) is used to evaluaxe the specific absorption rate (SAR) generated for the antenna into the liquid. The measurement setup with the antenna, phantom and liquid are simulated. Simulated and measured results in terrms of specific absorption rate and return loss are evaluated

    Effect of curing conditions and harvesting stage of maturity on Ethiopian onion bulb drying properties

    Get PDF
    The study was conducted to investigate the impact of curing conditions and harvesting stageson the drying quality of onion bulbs. The onion bulbs (Bombay Red cultivar) were harvested at three harvesting stages (early, optimum, and late maturity) and cured at three different temperatures (30, 40 and 50 oC) and relative humidity (30, 50 and 70%). The results revealed that curing temperature, RH, and maturity stage had significant effects on all measuredattributesexcept total soluble solids

    Target-specific multiphysics modeling for thermal medicine applications

    Get PDF
    Dissertation to obtain the degree of Doctor of Philosophy in Biomedical EngineeringThis thesis addresses thermal medicine applications on murine bladder hyperthermia and brain temperature monitoring. The two main objectives are interconnected by the key physics in thermal medicine: heat transfer. The first goal is to develop an analytical solution to characterize the heat transfer in a multi-layer perfused tissue. This analytical solution accounts for important thermoregulation mechanisms and is essential to understand the fundamentals underlying the physical and biological processes associated with heat transfer in living tissues. The second objective is the development of target-specific models that are too complex to be solved by analytical methods. Thus, the software for image segmentation and model simulation is based on numerical methods and is used to optimize non-invasive microwave antennas for specific targets. Two examples are explored using antennas in the passive mode (probe) and active mode (applicator). The passive antenna consists of a microwave radiometric sensor developed for rapid non-invasive feedback of critically important brain temperature. Its design parameters are optimized using a power-based algorithm. To demonstrate performance of the device, we build a realistic model of the human head with separate temperaturecontrolled brain and scalp regions. The sensor is able to track brain temperature with 0.4 °C accuracy in a 4.5 hour long experiment where brain temperature is varied in a 37 °C, 27 °C and 37 °C cycle. In the second study, a microwave applicator with an integrated cooling system is used to develop a new electro-thermo-fluid (multiphysics) model for murine bladder hyperthermia studies. The therapy procedure uses a temperature-based optimization algorithm to maintain the bladder at a desired therapeutic level while sparing remaining tissues from dangerous temperatures. This model shows that temperature dependent biological properties and the effects of anesthesia must be accounted to capture the absolute and transient temperature fields within murine tissues. The good agreement between simulation and experimental results demonstrates that this multiphysics model can be used to predict internal temperatures during murine hyperthermia studies

    Earth Observing System. Volume 1, Part 2: Science and Mission Requirements. Working Group Report Appendix

    Get PDF
    Areas of global hydrologic cycles, global biogeochemical cycles geophysical processes are addressed including biological oceanography, inland aquatic resources, land biology, tropospheric chemistry, oceanic transport, polar glaciology, sea ice and atmospheric chemistry

    Atmospheric detectives: Atlas 2 teacher's guide with activities. For use with middle-school students

    Get PDF
    Can you imagine doing a science project in space? This is the challenging and exciting situation that researchers experience in Spacelab, the laboratory carried inside the Shuttle. Here, hundreds of kilometers above Earth's surface, the crews of the ATLAS missions scan, probe, and measure concentrations of chemicals and water vapor in Earth's protective bubble. So far, one ATLAS crew has rocketed into the atmosphere, watching many sunrises and sunsets come and go while activating delicate instruments and conducting experiments that monitor the complicated interactions between the Sun, the atmosphere, and Earth. We, the crew of ATLAS 2, will continue this important work aboard the Space Shuttle. Together, we will gather data that will be compared with information from satellites, balloons, and instruments on the ground. As part of the National Aeronautics and Space Administration's (NASA's) contribution to Mission to Planet Earth, ATLAS 2 will help develop a thorough picture of the Sun's output, its interaction with the atmosphere, and the well-being of Earth's middle atmosphere. Because the health of the atmosphere is of vital importance to all Earth's inhabitants, everyone should be part of this investigation. You can be active participants in exciting and vital activities: recycling and practicing other conservation methods and gathering information to learn more about how you can keep our atmosphere healthy now, as students, and in the future as informed citizens, scientists, technicians, and mathematicians

    Design and Development of a Multi-Frequency System for Microwave Heating

    Full text link
    [ES] La utilización de sistemas de microondas para aplicaciones de calentamiento está muy extendida, principalmente por su uso en el calentamiento doméstico. El volumen de ventas del horno de microondas doméstico refleja un dato curioso: es el electrodoméstico más vendido en el mundo cada año. Por ello, el coste de producción del elemento principal, el magnetrón, presenta unos márgenes de beneficio imbatibles. Sin embargo, los avances en la fabricación de generadores de RF de alta potencia de estado sólido han puesto de manifiesto no solo las limitaciones de los sistemas basados en magnetrón sino también las grandes ventajas de la tecnología de transistores. Actualmente, los amplificadores de potencia de estado sólido han alcanzado una madurez suficiente como para competir en eficiencia, coste y calidad de la onda generada con el magnetrón. Las principales ventajas de los transistores son un reducido tamaño, tensiones de alimentación bajas, un espectro puro en frecuencia, un mayor tiempo de vida y el control digital directo. Los sistemas de microondas con esta tecnología están siendo introducidos en el mercado desde hace diez años, aunque las aplicaciones reales que los utilizan son escasas. La principal razón es la falta de diseños de aplicadores específicos para sacar el máximo provecho a las fuentes de estado sólido. , por tanto, es éste el objetivo de la tesis doctoral. Los sistemas S2MH (Solid-State Microwave Heating) se presentan en esta disertación doctoral como una alternativa que ofrece un calentamiento mejorado. La posibilidad de seleccionar la frecuencia exacta, ajustar la potencia de salida y realizar barridos de fase de forma coherente con múltiples iluminadores proporcionan al sistema un control preciso del proceso de calentamiento. El resultado directo de éste es un calentamiento homogéneo y el uso de la tecnología de microondas en procesos de alto valor añadido y fuerte dependencia con la temperatura. Esta tesis doctoral presenta el trabajo realizado en el diseño y fabricación de dos sistemas S2MH: el primero es un horno estático versátil para diferentes procesos químicos, y el segundo un horno de transporte para el secado de almendras. Estos dos sistemas están formados por el SSMGS (Solid-State Microwave Generator System), que incluye cuatro amplificadores de estado sólido (SSPA) con una generación de la onda coherente, y el aplicador. Para el diseño del SSMGS se han tenido en cuenta los requisitos de potencia y frecuencia de cada aplicación. Se ha utilizado un SSMGS con cuatro PA de 250 W a 2,450 MHz para el horno de aplicaciones químicas, mientras que el secado de almendras necesita cuatro PA de 500 W a 915 MHz. Los dos sistemas de generación de microondas permiten un control individual o combinado de los parámetros de los cuatro módulos amplificadores, i.e., potencia, frecuencia y fase. Todo el proceso de diseño ha sido llevado a cabo mediante modelado multi-físico, poniendo un especial cuidado en las propiedades termofísicas y dieléctricas de los alimentos y soluciones acuosas que tienen una importante dependencia con la temperatura. El comportamiento completo del sistema aplicador se ha estudiado con estas herramientas. Tras la fabricación de los dos prototipos o pruebas de concepto (PoC), los resultados obtenidos presentan un comportamiento similar al modelo y muestran, además, prometedoras mejoras frente a los sistemas actuales. El sistema de aplicaciones químicas presenta mejoras en la distribución de campo, independientemente de la aplicación y la carga. Y el sistema de secado de almendras proporciona un mayor control sobre el proceso evitando la pérdida de material por sobrecalentamiento.[CA] La utilització de sistemes de microones en aplicacions d'escalfament està molt estesa, principalment pel seu us en escalfament domèstic. El volum de ventes del forn de microones domèstic reflexa una informació curiosa: es l'electrodomèstic més venut anualment al món. Per això, el cost de producció del seu element principal, el magnetró, presenta uns marges de benefici imbatibles. No obstant això, els avanços en la fabricació de generadors de RF d'alta potencia d'estat sòlid han posat de manifest tant les limitacions dels sistemes basats en magnetró, com els grans avantatges de la tecnologia de transistors. Actualment, els amplificadors de potència d'estat sòlid son el suficientment madurs com per competir en eficiència, cost i qualitat de l'ona generada amb el magnetró. Els principals avantatges dels transistors son les dimensions reduïdes, tensions d'alimentació baixes, un espectre pur en freqüència, major temps de vida i el control digital directe. Els sistemes de microones amb aquesta tecnologia estan sent introduïts al mercat des de fa deu anys, malgrat les aplicacions reals son escasses. El principal motiu és la falta de dissenys de aplicadors específics per obtindré el màxim profit de les fonts d'estat sòlid. , por tanto, es éste el objetivo de la tesis doctoral. Els sistemes S2MH es presenten en esta dissertació doctoral com una alternativa que ofereix un escalfament millorat. La possibilitat de seleccionar la freqüència exacta, ajustar la potència d'eixida i realitzar un rastreig de fase de forma coherent amb molts il·luminadors proporcionen al sistema un control precís del procés d'escalfament. El resultat directe d'aquest es un escalfament homogeni i el us de la tecnologia de microones en processos d'alt valor afegit i alta sensibilitat a la temperatura. Aquesta dissertació doctoral presenta el treball realitzat en el disseny i fabricació de dos sistemes S2MH: el primer és un forn estàtic i versàtil per a diferent processos químics, i el segon es tracta d'un forn de transport per l'assecatge d'ametles. Tots dos sistemes estan formats pel SSMGS, que inclou quatre amplificadors d'estat sòlid (SSPA) amb generació coherent de l'ona, i l'aplicador. Per al disseny del SSMGS s'han tingut en compte els requisits de potència i freqüència de cada aplicació. S'ha utilitzat un SSMGS amb quatre PA de 250 W a 2,450 MHz per al forn d'aplicacions químiques, mentre que per al d'assecat d'ametla es necessita quatre PA de 500 W a 915 MHz. Ambdós sistemes de generació de microones permeten un control individual o combinat dels paràmetres dels quatre mòduls amplificadors, i.e., potència, freqüència i fase. Tot el procés de disseny ha sigut realitzat amb l'ajuda del modelat multi-físic, prestant una especial atenció a les propietats termofísiques i dielèctriques dels aliments i solucions aquoses, que tenen una important dependència de la temperatura. El comportament complet del sistema aplicador ha sigut estudiat amb estes ferramentes digitals. Després de la fabricació dels dos prototips o proves de concepte (PoC), els resultats obtinguts presenten un comportament similar al model i, a més a més, mostren millores prometedores front als sistemes actuals. El sistema d'aplicacions químiques presenta millores en la distribució de camp, independentment de l'aplicació i la càrrega. I el sistema d'assecatge d'ametlles proporciona un major control sobre el procés, evitant la pèrdua de material per sobreescalfament.[EN] Microwave systems are widely used for heating applications, mainly domestic food heating. The microwave oven sales figures place it as the first domestic appliance, giving its core element, the magnetron, an unbeatable production cost margin. However, recent improvements in RF high-power generator manufacturing have pointed out not only the limitations of these systems based on the magnetron but also the main benefits of the transistors technology. Nowadays, solid-state power amplifiers are mature enough to compete in efficiency, cost and quality with the magnetron. Transistors' main benefits are their reduced size, low operation voltages, pure frequency spectrum, lifetime, and straightforward digital control. Microwave systems based on solid-state power amplifiers have been recently introduced, although the real applications making use of them are rare. The main issue is the lack of applicator designs for specific solid-state sources that fully exploit the mentioned advantages; therefore, this is the main objective of the present PhD thesis. Solid-State Microwave Heating (S2MH) systems are presented in this PhD dissertation as an alternative that offers enhanced heating. Fine frequency selection, adjustable output power and coherent phase sweep in multiple outputs provide the system with accurate control over the heating process. The direct outcome of this control is the production of homogeneous heating and the application of microwave technology into high-added-value temperature-sensitive processes. The complete design and manufacture of two S2MH systems have been carried out and presented in this PhD thesis. The two designed systems are a multi-process chemical lab batch oven and an almond drying conveyorized oven. These two systems are composed of the Solid-State Microwave Generator System (SSMGS), consisting of four Solid-State Power Amplifiers (SSPA) with coherent wave generation, and the applicator. The design of the SSMGS has been carried out according to the power and frequency requirements of the application. A 4 x 250 W SSPA at 2,450 MHz SSMGS has been used for the chemical processes oven, while the almond drying application needs 4 x 500 W SSPA at 915 MHz. Both SSMGS allow the individual or combined digital control of the parameters of the four amplifying modules, i.e., power, frequency and phase. Multiphysics modelling has been thoroughly studied with special attention to the temperature-dependent thermophysical and dielectric properties of food and liquid solutions. The overall applicators' behaviour has been analysed with this tool. After completing the two PoC (Proof of Concept), the results show good agreement with the models. Both PoCs have shown promising improvements to the current state-of-the-art systems. The chemical applications PoC shows electromagnetic field distribution improvements, independent of the application or load. On the other hand, the almonds drying system provides increased control over the process avoiding material losses through overheating.Santón Pons, P. (2022). Design and Development of a Multi-Frequency System for Microwave Heating [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19132

    BS News March/April

    Get PDF

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 127, April 1974

    Get PDF
    This special bibliography lists 279 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1974
    corecore