47 research outputs found

    Joint Face Hallucination and Deblurring via Structure Generation and Detail Enhancement

    Full text link
    We address the problem of restoring a high-resolution face image from a blurry low-resolution input. This problem is difficult as super-resolution and deblurring need to be tackled simultaneously. Moreover, existing algorithms cannot handle face images well as low-resolution face images do not have much texture which is especially critical for deblurring. In this paper, we propose an effective algorithm by utilizing the domain-specific knowledge of human faces to recover high-quality faces. We first propose a facial component guided deep Convolutional Neural Network (CNN) to restore a coarse face image, which is denoted as the base image where the facial component is automatically generated from the input face image. However, the CNN based method cannot handle image details well. We further develop a novel exemplar-based detail enhancement algorithm via facial component matching. Extensive experiments show that the proposed method outperforms the state-of-the-art algorithms both quantitatively and qualitatively.Comment: In IJCV 201

    Continuous Facial Motion Deblurring

    Full text link
    We introduce a novel framework for continuous facial motion deblurring that restores the continuous sharp moment latent in a single motion-blurred face image via a moment control factor. Although a motion-blurred image is the accumulated signal of continuous sharp moments during the exposure time, most existing single image deblurring approaches aim to restore a fixed number of frames using multiple networks and training stages. To address this problem, we propose a continuous facial motion deblurring network based on GAN (CFMD-GAN), which is a novel framework for restoring the continuous moment latent in a single motion-blurred face image with a single network and a single training stage. To stabilize the network training, we train the generator to restore continuous moments in the order determined by our facial motion-based reordering process (FMR) utilizing domain-specific knowledge of the face. Moreover, we propose an auxiliary regressor that helps our generator produce more accurate images by estimating continuous sharp moments. Furthermore, we introduce a control-adaptive (ContAda) block that performs spatially deformable convolution and channel-wise attention as a function of the control factor. Extensive experiments on the 300VW datasets demonstrate that the proposed framework generates a various number of continuous output frames by varying the moment control factor. Compared with the recent single-to-single image deblurring networks trained with the same 300VW training set, the proposed method show the superior performance in restoring the central sharp frame in terms of perceptual metrics, including LPIPS, FID and Arcface identity distance. The proposed method outperforms the existing single-to-video deblurring method for both qualitative and quantitative comparisons

    Artificial Intelligence in the Creative Industries: A Review

    Full text link
    This paper reviews the current state of the art in Artificial Intelligence (AI) technologies and applications in the context of the creative industries. A brief background of AI, and specifically Machine Learning (ML) algorithms, is provided including Convolutional Neural Network (CNNs), Generative Adversarial Networks (GANs), Recurrent Neural Networks (RNNs) and Deep Reinforcement Learning (DRL). We categorise creative applications into five groups related to how AI technologies are used: i) content creation, ii) information analysis, iii) content enhancement and post production workflows, iv) information extraction and enhancement, and v) data compression. We critically examine the successes and limitations of this rapidly advancing technology in each of these areas. We further differentiate between the use of AI as a creative tool and its potential as a creator in its own right. We foresee that, in the near future, machine learning-based AI will be adopted widely as a tool or collaborative assistant for creativity. In contrast, we observe that the successes of machine learning in domains with fewer constraints, where AI is the `creator', remain modest. The potential of AI (or its developers) to win awards for its original creations in competition with human creatives is also limited, based on contemporary technologies. We therefore conclude that, in the context of creative industries, maximum benefit from AI will be derived where its focus is human centric -- where it is designed to augment, rather than replace, human creativity

    Survey on Controlable Image Synthesis with Deep Learning

    Full text link
    Image synthesis has attracted emerging research interests in academic and industry communities. Deep learning technologies especially the generative models greatly inspired controllable image synthesis approaches and applications, which aim to generate particular visual contents with latent prompts. In order to further investigate low-level controllable image synthesis problem which is crucial for fine image rendering and editing tasks, we present a survey of some recent works on 3D controllable image synthesis using deep learning. We first introduce the datasets and evaluation indicators for 3D controllable image synthesis. Then, we review the state-of-the-art research for geometrically controllable image synthesis in two aspects: 1) Viewpoint/pose-controllable image synthesis; 2) Structure/shape-controllable image synthesis. Furthermore, the photometrically controllable image synthesis approaches are also reviewed for 3D re-lighting researches. While the emphasis is on 3D controllable image synthesis algorithms, the related applications, products and resources are also briefly summarized for practitioners.Comment: 19 pages, 17 figure

    WaveDM: Wavelet-Based Diffusion Models for Image Restoration

    Full text link
    Latest diffusion-based methods for many image restoration tasks outperform traditional models, but they encounter the long-time inference problem. To tackle it, this paper proposes a Wavelet-Based Diffusion Model (WaveDM) with an Efficient Conditional Sampling (ECS) strategy. WaveDM learns the distribution of clean images in the wavelet domain conditioned on the wavelet spectrum of degraded images after wavelet transform, which is more time-saving in each step of sampling than modeling in the spatial domain. In addition, ECS follows the same procedure as the deterministic implicit sampling in the initial sampling period and then stops to predict clean images directly, which reduces the number of total sampling steps to around 5. Evaluations on four benchmark datasets including image raindrop removal, defocus deblurring, demoir\'eing, and denoising demonstrate that WaveDM achieves state-of-the-art performance with the efficiency that is comparable to traditional one-pass methods and over 100 times faster than existing image restoration methods using vanilla diffusion models
    corecore