4,711 research outputs found

    Automatic Phrase Continuation from Guitar and Bass guitar Melodies

    Get PDF

    A Standardised Procedure for Evaluating Creative Systems: Computational Creativity Evaluation Based on What it is to be Creative

    Get PDF
    Computational creativity is a flourishing research area, with a variety of creative systems being produced and developed. Creativity evaluation has not kept pace with system development with an evident lack of systematic evaluation of the creativity of these systems in the literature. This is partially due to difficulties in defining what it means for a computer to be creative; indeed, there is no consensus on this for human creativity, let alone its computational equivalent. This paper proposes a Standardised Procedure for Evaluating Creative Systems (SPECS). SPECS is a three-step process: stating what it means for a particular computational system to be creative, deriving and performing tests based on these statements. To assist this process, the paper offers a collection of key components of creativity, identified empirically from discussions of human and computational creativity. Using this approach, the SPECS methodology is demonstrated through a comparative case study evaluating computational creativity systems that improvise music

    The Neuroscience of Musical Improvisation

    Get PDF
    Researchers have recently begun to examine the neural basis of musical improvisation, one of the most complex forms of creative behavior. The emerging field of improvisation neuroscience has implications not only for the study of artistic expertise, but also for understanding the neural underpinnings of domain-general processes such as motor control and language production. This review synthesizes functional magnetic resonance imagining (fMRI) studies of musical improvisation, including vocal and instrumental improvisation, with samples of jazz pianists, classical musicians, freestyle rap artists, and non-musicians. A network of prefrontal brain regions commonly linked to improvisatory behavior is highlighted, including the pre-supplementary motor area, medial prefrontal cortex, inferior frontal gyrus, dorsolateral prefrontal cortex, and dorsal premotor cortex. Activation of premotor and lateral prefrontal regions suggests that a seemingly unconstrained behavior may actually benefit from motor planning and cognitive control. Yet activation of cortical midline regions points to a role of spontaneous cognition characteristic of the default network. Together, such results may reflect cooperation between large-scale brain networks associated with cognitive control and spontaneous thought. The improvisation literature is integrated with Pressing’s theoretical model, and discussed within the broader context of research on the brain basis of creative cognition

    Creativity as a Mental State: An EEG Study of Musical Improvisation

    Get PDF
    Researchers in cognitive neuroscience have used brain-imaging methods (e.g., EEG, fMRI) to investigate the neural correlates of creative cognition and have found increased activity in the alpha frequency band (Fink et al., 2009a, 2009b; Martindale, 1975), however few studies have used neuroscientific measures to investigate artistic creativity. Such studies are valuable because they share a characteristic of ecological validity. In this study I used EEG, the Alternate Uses Test (Guilford, 1967), and the Consensual Assessment Technique (Amabile, 1982) to substantiate a conceptualization of creativity as a mental state characterized by a distinct pattern of neural activity. The participants were musicians with and without previous formal institutional training in improvisation. Amongst those with previous training, frontal upper alpha synchronization in the right hemisphere was greater when musicians improvised than when they played back and listened to melodies. Originality scores correlated with frontal upper alpha synchronization in the right hemisphere during improvisation, and frontal upper alpha synchronization in the right hemisphere correlated with expert ratings of created products. The relationship of frontal upper alpha synchronization in the right hemisphere during improvisation and the quality of created products was mediated by aptitude for originality. This suggests that training acts as a pathway for the development of creative gifts into creative talents observable in the quality of created products

    From learning to creativity: Identifying the behavioural and neural correlates of learning to predict human judgements of musical creativity

    Get PDF
    Human creativity is strongly linked to acquired knowledge. However, to date learning a new musical style and subsequent creativity have largely been studied in isolation. We introduced a novel experimental paradigm combining behavioural, electrophysiological, and computational methods, to examine the neural correlates of unfamiliar music learning, and to investigate how neural and computational measures can predict human creativity. We investigated music learning by training non-musicians (N = 40) on an artificial music grammar. Participants’ knowledge of the grammar was tested before and after three training sessions by assessing explicit recognition of the notes of the grammar, while additionally recording EEG. After each training session, participants created their own musical compositions, which were later evaluated by human experts. A computational model of auditory expectation was used to quantify the statistical properties of both the grammar and the compositions. Results showed that participants successfully learned the grammar. This was also reflected in the N100, P200, and P3a components, which were higher in response to incorrect than correct notes. Delta band power in response to grammatical notes during first exposure to the grammar positively correlated with learning, suggesting a potential encoding neural mechanism. On the other hand, better learning was associated with lower alpha and higher beta band power after training, potentially reflecting neural mechanisms of retrieval. Importantly, learning was a significant predictor of creativity, as judged by experts. There was also an inverted U-shaped relationship between percentage of correct intervals and creativity, as compositions with an intermediate proportion of correct intervals were associated with the highest creativity. Finally, the P200 in response to incorrect notes was predictive of creativity, suggesting a link between the neural correlates of learning, and creativity. Overall, our findings shed light on the neural mechanisms of learning an unfamiliar music grammar, as well as offering contributions to the associations between learning measures and human evaluation of creativity

    Deep Learning Techniques for Music Generation -- A Survey

    Full text link
    This paper is a survey and an analysis of different ways of using deep learning (deep artificial neural networks) to generate musical content. We propose a methodology based on five dimensions for our analysis: Objective - What musical content is to be generated? Examples are: melody, polyphony, accompaniment or counterpoint. - For what destination and for what use? To be performed by a human(s) (in the case of a musical score), or by a machine (in the case of an audio file). Representation - What are the concepts to be manipulated? Examples are: waveform, spectrogram, note, chord, meter and beat. - What format is to be used? Examples are: MIDI, piano roll or text. - How will the representation be encoded? Examples are: scalar, one-hot or many-hot. Architecture - What type(s) of deep neural network is (are) to be used? Examples are: feedforward network, recurrent network, autoencoder or generative adversarial networks. Challenge - What are the limitations and open challenges? Examples are: variability, interactivity and creativity. Strategy - How do we model and control the process of generation? Examples are: single-step feedforward, iterative feedforward, sampling or input manipulation. For each dimension, we conduct a comparative analysis of various models and techniques and we propose some tentative multidimensional typology. This typology is bottom-up, based on the analysis of many existing deep-learning based systems for music generation selected from the relevant literature. These systems are described and are used to exemplify the various choices of objective, representation, architecture, challenge and strategy. The last section includes some discussion and some prospects.Comment: 209 pages. This paper is a simplified version of the book: J.-P. Briot, G. Hadjeres and F.-D. Pachet, Deep Learning Techniques for Music Generation, Computational Synthesis and Creative Systems, Springer, 201

    Computational Creativity and Music Generation Systems: An Introduction to the State of the Art

    Get PDF
    Computational Creativity is a multidisciplinary field that tries to obtain creative behaviors from computers. One of its most prolific subfields is that of Music Generation (also called Algorithmic Composition or Musical Metacreation), that uses computational means to compose music. Due to the multidisciplinary nature of this research field, it is sometimes hard to define precise goals and to keep track of what problems can be considered solved by state-of-the-art systems and what instead needs further developments. With this survey, we try to give a complete introduction to those who wish to explore Computational Creativity and Music Generation. To do so, we first give a picture of the research on the definition and the evaluation of creativity, both human and computational, needed to understand how computational means can be used to obtain creative behaviors and its importance within Artificial Intelligence studies. We then review the state of the art of Music Generation Systems, by citing examples for all the main approaches to music generation, and by listing the open challenges that were identified by previous reviews on the subject. For each of these challenges, we cite works that have proposed solutions, describing what still needs to be done and some possible directions for further research

    Creating Under Pressure: Effects of Divided Attention on the Improvised Output of Skilled Jazz Pianists

    Get PDF
    A growing body of research suggests that jazz musicians concatenate stored auditory and motor patterns during improvisation. We hypothesized that this mechanism allows musicians to focus attention more flexibly during improvisation; for example, on interaction with other ensemble members. We tested this idea by analyzing the frequency of repeated melodic patterns in improvisations by artist-level pianists forced to attend to a secondary unrelated counting task. Indeed, we found that compared to their own improvisations performed in a baseline control condition, participants used significantly more repeated patterns when their attention was focused on the secondary task. This main effect was independent of whether participants played in a familiar or unfamiliar key and held true using various measurements for pattern use
    corecore