258 research outputs found

    A Delay-Aware Caching Algorithm for Wireless D2D Caching Networks

    Full text link
    Recently, wireless caching techniques have been studied to satisfy lower delay requirements and offload traffic from peak periods. By storing parts of the popular files at the mobile users, users can locate some of their requested files in their own caches or the caches at their neighbors. In the latter case, when a user receives files from its neighbors, device-to-device (D2D) communication is enabled. D2D communication underlaid with cellular networks is also a new paradigm for the upcoming 5G wireless systems. By allowing a pair of adjacent D2D users to communicate directly, D2D communication can achieve higher throughput, better energy efficiency and lower traffic delay. In this work, we propose a very efficient caching algorithm for D2D-enabled cellular networks to minimize the average transmission delay. Instead of searching over all possible solutions, our algorithm finds out the best pairs, which provide the best delay improvement in each loop to form a caching policy with very low transmission delay and high throughput. This algorithm is also extended to address a more general scenario, in which the distributions of fading coefficients and values of system parameters potentially change over time. Via numerical results, the superiority of the proposed algorithm is verified by comparing it with a naive algorithm, in which all users simply cache their favorite files

    Wireless Content Caching for Small Cell and D2D Networks

    Get PDF
    The fifth generation wireless networks must provide fast and reliable connectivity while coping with the ongoing traffic growth. It is of paramount importance that the required resources, such as energy and bandwidth, do not scale with traffic. While the aggregate network traffic is growing at an unprecedented rate, users tend to request the same popular contents at different time instants. Therefore, caching the most popular contents at the network edge is a promising solution to reduce the traffic and the energy consumption over the backhaul links. In this paper, two scenarios are considered, where caching is performed either at a small base station, or directly at the user terminals, which communicate using Device-to-Device (D2D) communications. In both scenarios, joint design of the transmission and caching policies is studied when the user demands are known in advance. This joint design offers two different caching gains, namely, the pre-downloading and local caching gains. It is shown that the finite cache capacity limits the attainable gains, and creates an inherent tradeoff between the two types of gains. In this context, a continuous time optimization problem is formulated to determine the optimal transmission and caching policies that minimize a generic cost function, such as energy, bandwidth, or throughput. The jointly optimal solution is obtained by demonstrating that caching files at a constant rate is optimal, which allows reformulation of the problem as a finite-dimensional convex program. The numerical results show that the proposed joint transmission and caching policy dramatically reduces the total cost, which is particularised to the total energy consumption at the Macro Base Station (MBS), as well as to the total economical cost for the service provider, when users demand economical incentives for delivering content to other users over the D2D links

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Self-Sustaining Caching Stations: Towards Cost-Effective 5G-Enabled Vehicular Networks

    Full text link
    In this article, we investigate the cost-effective 5G-enabled vehicular networks to support emerging vehicular applications, such as autonomous driving, in-car infotainment and location-based road services. To this end, self-sustaining caching stations (SCSs) are introduced to liberate on-road base stations from the constraints of power lines and wired backhauls. Specifically, the cache-enabled SCSs are powered by renewable energy and connected to core networks through wireless backhauls, which can realize "drop-and-play" deployment, green operation, and low-latency services. With SCSs integrated, a 5G-enabled heterogeneous vehicular networking architecture is further proposed, where SCSs are deployed along roadside for traffic offloading while conventional macro base stations (MBSs) provide ubiquitous coverage to vehicles. In addition, a hierarchical network management framework is designed to deal with high dynamics in vehicular traffic and renewable energy, where content caching, energy management and traffic steering are jointly investigated to optimize the service capability of SCSs with balanced power demand and supply in different time scales. Case studies are provided to illustrate SCS deployment and operation designs, and some open research issues are also discussed.Comment: IEEE Communications Magazine, to appea

    Content Sharing in Mobile Networks with Infrastructure: Planning and Management

    Get PDF
    This thesis focuses on mobile ad-hoc networks (with pedestrian or vehicular mobility) having infrastructure support. We deal with the problems of design, deployment and management of such networks. A first issue to address concerns infrastructure itself: how pervasive should it be in order for the network to operate at the same time efficiently and in a cost-effective manner? How should the units composing it (e.g., access points) be placed? There are several approaches to such questions in literature, and this thesis studies and compares them. Furthermore, in order to effectively design the infrastructure, we need to understand how and how much it will be used. As an example, what is the relationship between infrastructure-to-node and node-to-node communication? How far away, in time and space, do data travel before its destination is reached? A common assumption made when dealing with such problems is that perfect knowledge about the current and future node mobility is available. In this thesis, we also deal with the problem of assessing the impact that an imperfect, limited knowledge has on network performance. As far as the management of the network is concerned, this thesis presents a variant of the paradigm known as publish-and-subscribe. With respect to the original paradigm, our goal was to ensure a high probability of finding the requested content, even in presence of selfish, uncooperative nodes, or even nodes whose precise goal is harming the system. Each node is allowed to get from the network an amount of content which corresponds to the amount of content provided to other nodes. Nodes with caching capabilities are assisted in using their cache in order to improve the amount of offered conten
    • …
    corecore