835 research outputs found

    Binary Classification with Positive Labeling Sources

    Full text link
    To create a large amount of training labels for machine learning models effectively and efficiently, researchers have turned to Weak Supervision (WS), which uses programmatic labeling sources rather than manual annotation. Existing works of WS for binary classification typically assume the presence of labeling sources that are able to assign both positive and negative labels to data in roughly balanced proportions. However, for many tasks of interest where there is a minority positive class, negative examples could be too diverse for developers to generate indicative labeling sources. Thus, in this work, we study the application of WS on binary classification tasks with positive labeling sources only. We propose WEAPO, a simple yet competitive WS method for producing training labels without negative labeling sources. On 10 benchmark datasets, we show WEAPO achieves the highest averaged performance in terms of both the quality of synthesized labels and the performance of the final classifier supervised with these labels. We incorporated the implementation of \method into WRENCH, an existing benchmarking platform.Comment: CIKM 2022 (short

    Neural-Hidden-CRF: A Robust Weakly-Supervised Sequence Labeler

    Full text link
    We propose a neuralized undirected graphical model called Neural-Hidden-CRF to solve the weakly-supervised sequence labeling problem. Under the umbrella of probabilistic undirected graph theory, the proposed Neural-Hidden-CRF embedded with a hidden CRF layer models the variables of word sequence, latent ground truth sequence, and weak label sequence with the global perspective that undirected graphical models particularly enjoy. In Neural-Hidden-CRF, we can capitalize on the powerful language model BERT or other deep models to provide rich contextual semantic knowledge to the latent ground truth sequence, and use the hidden CRF layer to capture the internal label dependencies. Neural-Hidden-CRF is conceptually simple and empirically powerful. It obtains new state-of-the-art results on one crowdsourcing benchmark and three weak-supervision benchmarks, including outperforming the recent advanced model CHMM by 2.80 F1 points and 2.23 F1 points in average generalization and inference performance, respectively.Comment: 13 pages, 4 figures, accepted by SIGKDD-202

    BOND: BERT-Assisted Open-Domain Named Entity Recognition with Distant Supervision

    Full text link
    We study the open-domain named entity recognition (NER) problem under distant supervision. The distant supervision, though does not require large amounts of manual annotations, yields highly incomplete and noisy distant labels via external knowledge bases. To address this challenge, we propose a new computational framework -- BOND, which leverages the power of pre-trained language models (e.g., BERT and RoBERTa) to improve the prediction performance of NER models. Specifically, we propose a two-stage training algorithm: In the first stage, we adapt the pre-trained language model to the NER tasks using the distant labels, which can significantly improve the recall and precision; In the second stage, we drop the distant labels, and propose a self-training approach to further improve the model performance. Thorough experiments on 5 benchmark datasets demonstrate the superiority of BOND over existing distantly supervised NER methods. The code and distantly labeled data have been released in https://github.com/cliang1453/BOND.Comment: Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD '20

    Semantic Representation and Inference for NLP

    Full text link
    Semantic representation and inference is essential for Natural Language Processing (NLP). The state of the art for semantic representation and inference is deep learning, and particularly Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), and transformer Self-Attention models. This thesis investigates the use of deep learning for novel semantic representation and inference, and makes contributions in the following three areas: creating training data, improving semantic representations and extending inference learning. In terms of creating training data, we contribute the largest publicly available dataset of real-life factual claims for the purpose of automatic claim verification (MultiFC), and we present a novel inference model composed of multi-scale CNNs with different kernel sizes that learn from external sources to infer fact checking labels. In terms of improving semantic representations, we contribute a novel model that captures non-compositional semantic indicators. By definition, the meaning of a non-compositional phrase cannot be inferred from the individual meanings of its composing words (e.g., hot dog). Motivated by this, we operationalize the compositionality of a phrase contextually by enriching the phrase representation with external word embeddings and knowledge graphs. Finally, in terms of inference learning, we propose a series of novel deep learning architectures that improve inference by using syntactic dependencies, by ensembling role guided attention heads, incorporating gating layers, and concatenating multiple heads in novel and effective ways. This thesis consists of seven publications (five published and two under review).Comment: PhD thesis, the University of Copenhage

    An automated pipeline for the discovery of conspiracy and conspiracy theory narrative frameworks: Bridgegate, Pizzagate and storytelling on the web

    Full text link
    Although a great deal of attention has been paid to how conspiracy theories circulate on social media and their factual counterpart conspiracies, there has been little computational work done on describing their narrative structures. We present an automated pipeline for the discovery and description of the generative narrative frameworks of conspiracy theories on social media, and actual conspiracies reported in the news media. We base this work on two separate repositories of posts and news articles describing the well-known conspiracy theory Pizzagate from 2016, and the New Jersey conspiracy Bridgegate from 2013. We formulate a graphical generative machine learning model where nodes represent actors/actants, and multi-edges and self-loops among nodes capture context-specific relationships. Posts and news items are viewed as samples of subgraphs of the hidden narrative network. The problem of reconstructing the underlying structure is posed as a latent model estimation problem. We automatically extract and aggregate the actants and their relationships from the posts and articles. We capture context specific actants and interactant relationships by developing a system of supernodes and subnodes. We use these to construct a network, which constitutes the underlying narrative framework. We show how the Pizzagate framework relies on the conspiracy theorists' interpretation of "hidden knowledge" to link otherwise unlinked domains of human interaction, and hypothesize that this multi-domain focus is an important feature of conspiracy theories. While Pizzagate relies on the alignment of multiple domains, Bridgegate remains firmly rooted in the single domain of New Jersey politics. We hypothesize that the narrative framework of a conspiracy theory might stabilize quickly in contrast to the narrative framework of an actual one, which may develop more slowly as revelations come to light.Comment: conspiracy theory, narrative structur

    Distributionally Robust Classification on a Data Budget

    Full text link
    Real world uses of deep learning require predictable model behavior under distribution shifts. Models such as CLIP show emergent natural distributional robustness comparable to humans, but may require hundreds of millions of training samples. Can we train robust learners in a domain where data is limited? To rigorously address this question, we introduce JANuS (Joint Annotations and Names Set), a collection of four new training datasets with images, labels, and corresponding captions, and perform a series of carefully controlled investigations of factors contributing to robustness in image classification, then compare those results to findings derived from a large-scale meta-analysis. Using this approach, we show that standard ResNet-50 trained with the cross-entropy loss on 2.4 million image samples can attain comparable robustness to a CLIP ResNet-50 trained on 400 million samples. To our knowledge, this is the first result showing (near) state-of-the-art distributional robustness on limited data budgets. Our dataset is available at \url{https://huggingface.co/datasets/penfever/JANuS_dataset}, and the code used to reproduce our experiments can be found at \url{https://github.com/penfever/vlhub/}.Comment: TMLR 2023; openreview link: https://openreview.net/forum?id=D5Z2E8CNs
    corecore