3,459 research outputs found

    Índices espectrais baseados em programação genética para classificação de imagens de sensoriamento remoto

    Get PDF
    Orientador: Ricardo da Silva TorresDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Sensoriamento remoto é o conjunto de técnicas que permitem, por meio de sensores, analisar objetos a longas distâncias sem estabelecer contato físico com eles. Atualmente, sua contribuição em ciências naturais é enorme, dado que é possível adquirir imagens de alvos em mais regiões do espectro eletromagnético além do canal visível. Trabalhar com imagens compostas por múltiplas bandas espectrais requer tratar grandes quantidades de informação associada a uma única entidade, coisa que afeta negativamente o desempenho de algoritmos de predição, fazendo nacessário o uso de técnicas de redução da dimensionalidade. Este trabalho apresenta uma abordagem de extração de características baseada em índices espectrais aprendidos por Programação Genética (GP), que projetam os dados associados aos pixels em novos espaços de características, com o objetivo de aprimorar a acurácia de algoritmos de classificação. Índices espectrais são funções que relacionam a refletância, em canais específicos do espectro, com valores reais que podem ser interpretados como a abundância de características de interesse de objetos captados à distância. Com GP é possível aprender índices que maximizam a separabilidade de amostras de duas classes diferentes. Assim que os índices especializados para cada par possível de classes são obtidos, empregam-se duas abordagens diferentes para combiná-los e construir um sistema de classificação de pixels. Os resultados obtidos para os cenários binário e multi-classe mostram que o método proposto é competitivo com respeito a técnicas tradicionais de redução da dimensionalidade. Experimentos adicionais aplicando o método para análise sazonal de biomas tropicais mostram claramente a superioridade de índices aprendidos por GP para propósitos de discriminação, quando comparados a índices desenvolvidos por especialistas, independentemente da especificidade do problemaAbstract: Remote sensing is the set of techniques that allow, by means of sensor technologies, to analyze objects at long distances without making physical contact with them. Currently, its contribution for natural sciences is enormous, since it is possible to acquire images of target objects in more regions of the electromagnetic spectrum than the visible region only. Working with images composed of various spectral bands demands dealing with huge amounts of data associated with single entities, which affects negatively the performance in prediction tasks, and makes necessary the use of dimensionality reduction techniques. This work introduces a feature extraction approach, based on spectral indices learned by Genetic Programming (GP), to project data from pixel values into new feature spaces aiming to improve classification accuracy. Spectral indices are functions that map the reflectance of remotely sensed objects in specific wavelength intervals, into real scalars that can be interpreted as the abundance of features of interest. Through GP, it is possible to learn indices that maximize the separability of samples from two different classes. Once the indices specialized for all the pairs of classes are obtained, they are used in two different approaches to fuse them into a pixel classification system. Results for the binary and multi-class scenarios show that the proposed method is competitive with respect to traditional dimensionality reduction techniques. Additional experiments in tropical biomes seasonal analysis show clearly how superior GP-based spectral indices are for discrimination purposes, when compared to indices developed by experts, regardless the specificity of the problemMestradoCiência da ComputaçãoMestre em Ciência da Computação134089/2015-4CNP

    Improving land cover classification using genetic programming for feature construction

    Get PDF
    Batista, J. E., Cabral, A. I. R., Vasconcelos, M. J. P., Vanneschi, L., & Silva, S. (2021). Improving land cover classification using genetic programming for feature construction. Remote Sensing, 13(9), [1623]. https://doi.org/10.3390/rs13091623Genetic programming (GP) is a powerful machine learning (ML) algorithm that can produce readable white-box models. Although successfully used for solving an array of problems in different scientific areas, GP is still not well known in the field of remote sensing. The M3GP algorithm, a variant of the standard GP algorithm, performs feature construction by evolving hyperfeatures from the original ones. In this work, we use the M3GP algorithm on several sets of satellite images over different countries to create hyperfeatures from satellite bands to improve the classification of land cover types. We add the evolved hyperfeatures to the reference datasets and observe a significant improvement of the performance of three state-of-the-art ML algorithms (decision trees, random forests, and XGBoost) on multiclass classifications and no significant effect on the binary classifications. We show that adding the M3GP hyperfeatures to the reference datasets brings better results than adding the well-known spectral indices NDVI, NDWI, and NBR. We also compare the performance of the M3GP hyperfeatures in the binary classification problems with those created by other feature construction methods such as FFX and EFS.publishersversionpublishe

    Data Mining and Machine Learning in Astronomy

    Full text link
    We review the current state of data mining and machine learning in astronomy. 'Data Mining' can have a somewhat mixed connotation from the point of view of a researcher in this field. If used correctly, it can be a powerful approach, holding the potential to fully exploit the exponentially increasing amount of available data, promising great scientific advance. However, if misused, it can be little more than the black-box application of complex computing algorithms that may give little physical insight, and provide questionable results. Here, we give an overview of the entire data mining process, from data collection through to the interpretation of results. We cover common machine learning algorithms, such as artificial neural networks and support vector machines, applications from a broad range of astronomy, emphasizing those where data mining techniques directly resulted in improved science, and important current and future directions, including probability density functions, parallel algorithms, petascale computing, and the time domain. We conclude that, so long as one carefully selects an appropriate algorithm, and is guided by the astronomical problem at hand, data mining can be very much the powerful tool, and not the questionable black box.Comment: Published in IJMPD. 61 pages, uses ws-ijmpd.cls. Several extra figures, some minor additions to the tex

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001
    corecore