54,594 research outputs found

    Learning to Associate Words and Images Using a Large-scale Graph

    Full text link
    We develop an approach for unsupervised learning of associations between co-occurring perceptual events using a large graph. We applied this approach to successfully solve the image captcha of China's railroad system. The approach is based on the principle of suspicious coincidence. In this particular problem, a user is presented with a deformed picture of a Chinese phrase and eight low-resolution images. They must quickly select the relevant images in order to purchase their train tickets. This problem presents several challenges: (1) the teaching labels for both the Chinese phrases and the images were not available for supervised learning, (2) no pre-trained deep convolutional neural networks are available for recognizing these Chinese phrases or the presented images, and (3) each captcha must be solved within a few seconds. We collected 2.6 million captchas, with 2.6 million deformed Chinese phrases and over 21 million images. From these data, we constructed an association graph, composed of over 6 million vertices, and linked these vertices based on co-occurrence information and feature similarity between pairs of images. We then trained a deep convolutional neural network to learn a projection of the Chinese phrases onto a 230-dimensional latent space. Using label propagation, we computed the likelihood of each of the eight images conditioned on the latent space projection of the deformed phrase for each captcha. The resulting system solved captchas with 77% accuracy in 2 seconds on average. Our work, in answering this practical challenge, illustrates the power of this class of unsupervised association learning techniques, which may be related to the brain's general strategy for associating language stimuli with visual objects on the principle of suspicious coincidence.Comment: 8 pages, 7 figures, 14th Conference on Computer and Robot Vision 201

    Reference face graph for face recognition

    Get PDF
    Face recognition has been studied extensively; however, real-world face recognition still remains a challenging task. The demand for unconstrained practical face recognition is rising with the explosion of online multimedia such as social networks, and video surveillance footage where face analysis is of significant importance. In this paper, we approach face recognition in the context of graph theory. We recognize an unknown face using an external reference face graph (RFG). An RFG is generated and recognition of a given face is achieved by comparing it to the faces in the constructed RFG. Centrality measures are utilized to identify distinctive faces in the reference face graph. The proposed RFG-based face recognition algorithm is robust to the changes in pose and it is also alignment free. The RFG recognition is used in conjunction with DCT locality sensitive hashing for efficient retrieval to ensure scalability. Experiments are conducted on several publicly available databases and the results show that the proposed approach outperforms the state-of-the-art methods without any preprocessing necessities such as face alignment. Due to the richness in the reference set construction, the proposed method can also handle illumination and expression variation

    Graph Signal Processing: Overview, Challenges and Applications

    Full text link
    Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing. We then summarize recent developments in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning. We finish by providing a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas.Comment: To appear, Proceedings of the IEE
    • …
    corecore