473 research outputs found

    From Adaptive Reasoning to Cognitive Factory: Bringing Cognitive Intelligence to Manufacturing Technology

    Get PDF
    There are two important aspects that will play important roles in future manufacturing systems: changeability and human-machine collaboration. The first aspect, changeability, concerns with the ability of production tools to reconfigure themselves to the new manufacturing settings, possibly with unknown prior information, while maintaining their reliability at lowest cost. The second aspect, human-machine collaboration, emphasizes the ability of production tools to put themselves on the position as humans’ co-workers. The interplay between these two aspects will not only determine the economical accomplishment of a manufacturing process, but it will also shape the future of the technology itself. To address this future challenge of manufacturing systems, the concept of Cognitive Factory was proposed. Along this line, machines and processes are equipped with cognitive capabilities in order to allow them to assess and increase their scope of operation autonomously. However, the technical implementation of such a concept is still widely open for research, since there are several stumbling blocks that limit practicality of the proposed methods. In this paper, we introduce our method to achieve the goal of the Cognitive Factory. Our method is inspired by the working mechanisms of a human’s brain; it works by harnessing the reasoning capabilities of cognitive architecture. By utilizing such an adaptive reasoning mechanism, we envision the future manufacturing systems with cognitive intelligence. We provide illustrative examples from our current research work to demonstrate that our proposed method is notable to address the primary issues of the Cognitive Factory: changeability and human-machine collaboration

    Review of Intelligent Control Systems with Robotics

    Get PDF
    Interactive between human and robot assumes a significant job in improving the productivity of the instrument in mechanical technology. Numerous intricate undertakings are cultivated continuously via self-sufficient versatile robots. Current automated control frameworks have upset the creation business, making them very adaptable and simple to utilize. This paper examines current and up and coming sorts of control frameworks and their execution in mechanical technology, and the job of AI in apply autonomy. It additionally expects to reveal insight into the different issues around the control frameworks and the various approaches to fix them. It additionally proposes the basics of apply autonomy control frameworks and various kinds of mechanical technology control frameworks. Each kind of control framework has its upsides and downsides which are talked about in this paper. Another kind of robot control framework that upgrades and difficulties the pursuit stage is man-made brainpower. A portion of the speculations utilized in man-made reasoning, for example, Artificial Intelligence (AI) such as fuzzy logic, neural network and genetic algorithm, are itemized in this paper. At long last, a portion of the joint efforts between mechanical autonomy, people, and innovation were referenced. Human coordinated effort, for example, Kinect signal acknowledgment utilized in games and versatile upper-arm-based robots utilized in the clinical field for individuals with inabilities. Later on, it is normal that the significance of different sensors will build, accordingly expanding the knowledge and activity of the robot in a modern domai

    Human activity recognition: suitability of a neuromorphic approach for on-edge AIoT applications

    Get PDF
    Human activity recognition (HAR) is a classification problem involving time-dependent signals produced by body monitoring, and its application domain covers all the aspects of human life, from healthcare to sport, from safety to smart environments. As such, it is naturally well suited for on-edge deployment of personalized point-of-care (POC) analyses or other tailored services for the user. However, typical smart and wearable devices suffer from relevant limitations regarding energy consumption, and this significantly hinders the possibility for successful employment of edge computing for tasks like HAR. In this paper, we investigate how this problem can be mitigated by adopting a neuromorphic approach. By comparing optimized classifiers based on traditional deep neural network (DNN) architectures as well as on recent alternatives like the Legendre Memory Unit (LMU), we show how spiking neural networks (SNNs) can effectively deal with the temporal signals typical of HAR providing high performances at a low energy cost. By carrying out an application-oriented hyperparameter optimization, we also propose a methodology flexible to be extended to different domains, to enlarge the field of neuro-inspired classifier suitable for on-edge artificial intelligence of things (AIoT) applications

    ESTABLISHING THE FOUNDATION TO ROBOTIZE COMPLEX WELDING PROCESSES THROUGH LEARNING FROM HUMAN WELDERS BASED ON DEEP LEARNING TECHNIQUES

    Get PDF
    As the demand for customized, efficient, and high-quality production increases, traditional manufacturing processes are transforming into smart manufacturing with the aid of advancements in information technology, such as cyber-physical systems (CPS), the Internet of Things (IoT), big data, and artificial intelligence (AI). The key requirement for integration with these advanced information technologies is to digitize manufacturing processes to enable analysis, control, and interaction with other digitized components. The integration of deep learning algorithm and massive industrial data will be critical components in realizing this process, leading to enhanced manufacturing in the Future of Work at the Human-Technology Frontier (FW-HTF). This work takes welding manufacturing as the case study to accelerate its transition to intelligent welding by robotize a complex welding process. By integrate process sensing, data visualization, deep learning-based modeling and optimization, a complex welding system is established, with the systematic solution to generalize domain-specific knowledge from experienced human welder. Such system can automatically perform complex welding processes that can only be handled by human in the past. To enhance the system\u27s tracking capabilities, we trained an image segmentation network to offer precise position information. We incorporated a recurrent neural network structure to analyze dynamic variations during welding. Addressing the challenge of human heterogeneity in data collection, we conducted experiments illustrating that even inaccurate datasets can effectively train deep learning models with zero mean error. Fine-tuning the model with a small portion of accurate data further elevates its performance

    Emergence of Functional Hierarchy in a Multiple Timescale Neural Network Model: A Humanoid Robot Experiment

    Get PDF
    It is generally thought that skilled behavior in human beings results from a functional hierarchy of the motor control system, within which reusable motor primitives are flexibly integrated into various sensori-motor sequence patterns. The underlying neural mechanisms governing the way in which continuous sensori-motor flows are segmented into primitives and the way in which series of primitives are integrated into various behavior sequences have, however, not yet been clarified. In earlier studies, this functional hierarchy has been realized through the use of explicit hierarchical structure, with local modules representing motor primitives in the lower level and a higher module representing sequences of primitives switched via additional mechanisms such as gate-selecting. When sequences contain similarities and overlap, however, a conflict arises in such earlier models between generalization and segmentation, induced by this separated modular structure. To address this issue, we propose a different type of neural network model. The current model neither makes use of separate local modules to represent primitives nor introduces explicit hierarchical structure. Rather than forcing architectural hierarchy onto the system, functional hierarchy emerges through a form of self-organization that is based on two distinct types of neurons, each with different time properties (“multiple timescales”). Through the introduction of multiple timescales, continuous sequences of behavior are segmented into reusable primitives, and the primitives, in turn, are flexibly integrated into novel sequences. In experiments, the proposed network model, coordinating the physical body of a humanoid robot through high-dimensional sensori-motor control, also successfully situated itself within a physical environment. Our results suggest that it is not only the spatial connections between neurons but also the timescales of neural activity that act as important mechanisms leading to functional hierarchy in neural systems

    2022 roadmap on neuromorphic computing and engineering

    Full text link
    Modern computation based on von Neumann architecture is now a mature cutting-edge science. In the von Neumann architecture, processing and memory units are implemented as separate blocks interchanging data intensively and continuously. This data transfer is responsible for a large part of the power consumption. The next generation computer technology is expected to solve problems at the exascale with 1018^{18} calculations each second. Even though these future computers will be incredibly powerful, if they are based on von Neumann type architectures, they will consume between 20 and 30 megawatts of power and will not have intrinsic physically built-in capabilities to learn or deal with complex data as our brain does. These needs can be addressed by neuromorphic computing systems which are inspired by the biological concepts of the human brain. This new generation of computers has the potential to be used for the storage and processing of large amounts of digital information with much lower power consumption than conventional processors. Among their potential future applications, an important niche is moving the control from data centers to edge devices. The aim of this roadmap is to present a snapshot of the present state of neuromorphic technology and provide an opinion on the challenges and opportunities that the future holds in the major areas of neuromorphic technology, namely materials, devices, neuromorphic circuits, neuromorphic algorithms, applications, and ethics. The roadmap is a collection of perspectives where leading researchers in the neuromorphic community provide their own view about the current state and the future challenges for each research area. We hope that this roadmap will be a useful resource by providing a concise yet comprehensive introduction to readers outside this field, for those who are just entering the field, as well as providing future perspectives for those who are well established in the neuromorphic computing community
    corecore