1,216 research outputs found

    Learning the Optimal use of Dependency-parsing Information for Finding Translations with Comparable Corpora

    Get PDF
    Abstract Using comparable corpora to find new word translations is a promising approach for extending bilingual dictionaries (semi-) automatically. The basic idea is based on the assumption that similar words have similar contexts across languages. The context of a word is often summarized by using the bag-of-words in the sentence, or by using the words which are in a certain dependency position, e.g. the predecessors and successors. These different context positions are then combined into one context vector and compared across languages. However, previous research makes the (implicit) assumption that these different context positions should be weighted as equally important. Furthermore, only the same context positions are compared with each other, for example the successor position in Spanish is compared with the successor position in English. However, this is not necessarily always appropriate for languages like Japanese and English. To overcome these limitations, we suggest to perform a linear transformation of the context vectors, which is defined by a matrix. We define the optimal transformation matrix by using a Bayesian probabilistic model, and show that it is feasible to find an approximate solution using Markov chain Monte Carlo methods. Our experiments demonstrate that our proposed method constantly improves translation accuracy

    A Survey of Paraphrasing and Textual Entailment Methods

    Full text link
    Paraphrasing methods recognize, generate, or extract phrases, sentences, or longer natural language expressions that convey almost the same information. Textual entailment methods, on the other hand, recognize, generate, or extract pairs of natural language expressions, such that a human who reads (and trusts) the first element of a pair would most likely infer that the other element is also true. Paraphrasing can be seen as bidirectional textual entailment and methods from the two areas are often similar. Both kinds of methods are useful, at least in principle, in a wide range of natural language processing applications, including question answering, summarization, text generation, and machine translation. We summarize key ideas from the two areas by considering in turn recognition, generation, and extraction methods, also pointing to prominent articles and resources.Comment: Technical Report, Natural Language Processing Group, Department of Informatics, Athens University of Economics and Business, Greece, 201

    Improving the translation environment for professional translators

    Get PDF
    When using computer-aided translation systems in a typical, professional translation workflow, there are several stages at which there is room for improvement. The SCATE (Smart Computer-Aided Translation Environment) project investigated several of these aspects, both from a human-computer interaction point of view, as well as from a purely technological side. This paper describes the SCATE research with respect to improved fuzzy matching, parallel treebanks, the integration of translation memories with machine translation, quality estimation, terminology extraction from comparable texts, the use of speech recognition in the translation process, and human computer interaction and interface design for the professional translation environment. For each of these topics, we describe the experiments we performed and the conclusions drawn, providing an overview of the highlights of the entire SCATE project

    Translationese and post-editese : how comparable is comparable quality?

    Get PDF
    Whereas post-edited texts have been shown to be either of comparable quality to human translations or better, one study shows that people still seem to prefer human-translated texts. The idea of texts being inherently different despite being of high quality is not new. Translated texts, for example,are also different from original texts, a phenomenon referred to as ‘Translationese’. Research into Translationese has shown that, whereas humans cannot distinguish between translated and original text,computers have been trained to detect Translationesesuccessfully. It remains to be seen whether the same can be done for what we call Post-editese. We first establish whether humans are capable of distinguishing post-edited texts from human translations, and then establish whether it is possible to build a supervised machine-learning model that can distinguish between translated and post-edited text

    A survey of cross-lingual word embedding models

    Get PDF
    Cross-lingual representations of words enable us to reason about word meaning in multilingual contexts and are a key facilitator of cross-lingual transfer when developing natural language processing models for low-resource languages. In this survey, we provide a comprehensive typology of cross-lingual word embedding models. We compare their data requirements and objective functions. The recurring theme of the survey is that many of the models presented in the literature optimize for the same objectives, and that seemingly different models are often equivalent, modulo optimization strategies, hyper-parameters, and such. We also discuss the different ways cross-lingual word embeddings are evaluated, as well as future challenges and research horizons.</jats:p

    Multiword expression processing: A survey

    Get PDF
    Multiword expressions (MWEs) are a class of linguistic forms spanning conventional word boundaries that are both idiosyncratic and pervasive across different languages. The structure of linguistic processing that depends on the clear distinction between words and phrases has to be re-thought to accommodate MWEs. The issue of MWE handling is crucial for NLP applications, where it raises a number of challenges. The emergence of solutions in the absence of guiding principles motivates this survey, whose aim is not only to provide a focused review of MWE processing, but also to clarify the nature of interactions between MWE processing and downstream applications. We propose a conceptual framework within which challenges and research contributions can be positioned. It offers a shared understanding of what is meant by "MWE processing," distinguishing the subtasks of MWE discovery and identification. It also elucidates the interactions between MWE processing and two use cases: Parsing and machine translation. Many of the approaches in the literature can be differentiated according to how MWE processing is timed with respect to underlying use cases. We discuss how such orchestration choices affect the scope of MWE-aware systems. For each of the two MWE processing subtasks and for each of the two use cases, we conclude on open issues and research perspectives

    Cross-Lingual Induction and Transfer of Verb Classes Based on Word Vector Space Specialisation

    Full text link
    Existing approaches to automatic VerbNet-style verb classification are heavily dependent on feature engineering and therefore limited to languages with mature NLP pipelines. In this work, we propose a novel cross-lingual transfer method for inducing VerbNets for multiple languages. To the best of our knowledge, this is the first study which demonstrates how the architectures for learning word embeddings can be applied to this challenging syntactic-semantic task. Our method uses cross-lingual translation pairs to tie each of the six target languages into a bilingual vector space with English, jointly specialising the representations to encode the relational information from English VerbNet. A standard clustering algorithm is then run on top of the VerbNet-specialised representations, using vector dimensions as features for learning verb classes. Our results show that the proposed cross-lingual transfer approach sets new state-of-the-art verb classification performance across all six target languages explored in this work.Comment: EMNLP 2017 (long paper

    Bilingual distributed word representations from document-aligned comparable data

    Get PDF
    We propose a new model for learning bilingual word representations from non-parallel document-aligned data. Following the recent advances in word representation learning, our model learns dense real-valued word vectors, that is, bilingual word embeddings (BWEs). Unlike prior work on inducing BWEs which heavily relied on parallel sentence-aligned corpora and/or readily available translation resources such as dictionaries, the article reveals that BWEs may be learned solely on the basis of document-aligned comparable data without any additional lexical resources nor syntactic information. We present a comparison of our approach with previous state-of-the-art models for learning bilingual word representations from comparable data that rely on the framework of multilingual probabilistic topic modeling (MuPTM), as well as with distributional local context-counting models. We demonstrate the utility of the induced BWEs in two semantic tasks: (1) bilingual lexicon extraction, (2) suggesting word translations in context for polysemous words. Our simple yet effective BWE-based models significantly outperform the MuPTM-based and contextcounting representation models from comparable data as well as prior BWE-based models, and acquire the best reported results on both tasks for all three tested language pairs.This work was done while Ivan Vuli c was a postdoctoral researcher at Department of Computer Science, KU Leuven supported by the PDM Kort fellowship (PDMK/14/117). The work was also supported by the SCATE project (IWT-SBO 130041) and the ERC Consolidator Grant LEXICAL: Lexical Acquisition Across Languages (648909)

    D4.1. Technologies and tools for corpus creation, normalization and annotation

    Get PDF
    The objectives of the Corpus Acquisition and Annotation (CAA) subsystem are the acquisition and processing of monolingual and bilingual language resources (LRs) required in the PANACEA context. Therefore, the CAA subsystem includes: i) a Corpus Acquisition Component (CAC) for extracting monolingual and bilingual data from the web, ii) a component for cleanup and normalization (CNC) of these data and iii) a text processing component (TPC) which consists of NLP tools including modules for sentence splitting, POS tagging, lemmatization, parsing and named entity recognition
    • …
    corecore