223,763 research outputs found

    Learning multi-stage tasks with one demonstration via self-replay

    Get PDF
    In this work, we introduce a novel method to learn everyday-like multistage tasks from a single human demonstration, without requiring any prior object knowledge. Inspired by the recent Coarse-to-Fine Imitation Learning method, we model imitation learning as a learned object reaching phase followed by an openloop replay of the demonstrator’s actions. We build upon this for multi-stage tasks where, following the human demonstration, the robot can autonomously collect image data for the entire multi-stage task, by reaching the next object in the sequence and then replaying the demonstration, and then repeating in a loop for all stages of the task. We evaluate with real-world experiments on a set of everydaylike multi-stage tasks, which we show that our method can solve from a single demonstration. Videos and supplementary material can be found at this webpage

    One-Shot Observation Learning

    Get PDF
    Observation learning is the process of learning a task by observing an expert demonstrator. We present a robust observation learning method for robotic systems. Our principle contributions are in introducing a one shot learning method where only a single demonstration is needed for learning and in proposing a novel feature extraction method for extracting unique activity features from the demonstration. Reward values are then generated from these demonstrations. We use a learning algorithm with these rewards to learn the controls for a robotic manipulator to perform the demonstrated task. With simulation and real robot experiments, we show that the proposed method can be used to learn tasks from a single demonstration under varying conditions of viewpoints, object properties, morphology of manipulators and scene backgrounds

    Task-embedded control networks for few-shot imitation learning

    Get PDF
    Much like humans, robots should have the ability to leverage knowledge from previously learned tasks in order to learn new tasks quickly in new and unfamiliar environments. Despite this, most robot learning approaches have focused on learning a single task, from scratch, with a limited notion of generalisation, and no way of leveraging the knowledge to learn other tasks more efficiently. One possible solution is meta-learning, but many of the related approaches are limited in their ability to scale to a large number of tasks and to learn further tasks without forgetting previously learned ones. With this in mind, we introduce Task-Embedded Control Networks, which employ ideas from metric learning in order to create a task embedding that can be used by a robot to learn new tasks from one or more demonstrations. In the area of visually-guided manipulation, we present simulation results in which we surpass the performance of a state-of-the-art method when using only visual information from each demonstration. Additionally, we demonstrate that our approach can also be used in conjunction with domain randomisation to train our few-shot learning ability in simulation and then deploy in the real world without any additional training. Once deployed, the robot can learn new tasks from a single real-world demonstration
    corecore