2,423 research outputs found

    Attentive Adversarial Learning for Domain-Invariant Training

    Full text link
    Adversarial domain-invariant training (ADIT) proves to be effective in suppressing the effects of domain variability in acoustic modeling and has led to improved performance in automatic speech recognition (ASR). In ADIT, an auxiliary domain classifier takes in equally-weighted deep features from a deep neural network (DNN) acoustic model and is trained to improve their domain-invariance by optimizing an adversarial loss function. In this work, we propose an attentive ADIT (AADIT) in which we advance the domain classifier with an attention mechanism to automatically weight the input deep features according to their importance in domain classification. With this attentive re-weighting, AADIT can focus on the domain normalization of phonetic components that are more susceptible to domain variability and generates deep features with improved domain-invariance and senone-discriminativity over ADIT. Most importantly, the attention block serves only as an external component to the DNN acoustic model and is not involved in ASR, so AADIT can be used to improve the acoustic modeling with any DNN architectures. More generally, the same methodology can improve any adversarial learning system with an auxiliary discriminator. Evaluated on CHiME-3 dataset, the AADIT achieves 13.6% and 9.3% relative WER improvements, respectively, over a multi-conditional model and a strong ADIT baseline.Comment: 5 pages, 1 figure, ICASSP 201

    Automatic speech recognition with deep neural networks for impaired speech

    Get PDF
    The final publication is available at https://link.springer.com/chapter/10.1007%2F978-3-319-49169-1_10Automatic Speech Recognition has reached almost human performance in some controlled scenarios. However, recognition of impaired speech is a difficult task for two main reasons: data is (i) scarce and (ii) heterogeneous. In this work we train different architectures on a database of dysarthric speech. A comparison between architectures shows that, even with a small database, hybrid DNN-HMM models outperform classical GMM-HMM according to word error rate measures. A DNN is able to improve the recognition word error rate a 13% for subjects with dysarthria with respect to the best classical architecture. This improvement is higher than the one given by other deep neural networks such as CNNs, TDNNs and LSTMs. All the experiments have been done with the Kaldi toolkit for speech recognition for which we have adapted several recipes to deal with dysarthric speech and work on the TORGO database. These recipes are publicly available.Peer ReviewedPostprint (author's final draft

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination
    • …
    corecore