1,342 research outputs found

    How to Think About Resilient Infrastructure Systems

    Get PDF
    abstract: Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems? This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure. Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    An Artificial Intelligence application for drone-assisted 5G remote e-Health

    Get PDF
    Artificial intelligence (AI) algorithms are experiencing growing research interest due to their ability to improve decision making capabilities for promising applications in different economic sectors. The growing shift toward the Internet of Everything environments brought by devices embedded with sensors that can share information brings immense opportunity for new applications (apps). While these new apps thrive in resource-rich areas (i.e., capitals), neighboring cities that lack the resources and infrastructure to support them may be left behind. It is vital that new technologies can reach those who need them the most, especially healthcare-based. This article proposes an app-based approach for long-distance patient monitoring and care. The app would serve as a platform of communication between patients and healthcare staff, where the latter can send standardized video footage or pictures to the former (e.g., their primary care doctor). This feature is enhanced with a recurrent neural network algorithm as a validation tool for healthcare-related videos exchanged between patients and staff. Thus, the healthcare team does not need to check each video for validity, freeing their time for other activities

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    An intelligent classification system for land use and land cover mapping using spaceborne remote sensing and GIS

    Get PDF
    The objectives of this study were to experiment with and extend current methods of Synthetic Aperture Rader (SAR) image classification, and to design and implement a prototype intelligent remote sensing image processing and classification system for land use and land cover mapping in wet season conditions in Bangladesh, which incorporates SAR images and other geodata. To meet these objectives, the problem of classifying the spaceborne SAR images, and integrating Geographic Information System (GIS) data and ground truth data was studied first. In this phase of the study, an extension to traditional techniques was made by applying a Self-Organizing feature Map (SOM) to include GIS data with the remote sensing data during image segmentation. The experimental results were compared with those of traditional statistical classifiers, such as Maximum Likelihood, Mahalanobis Distance, and Minimum Distance classifiers. The performances of the classifiers were evaluated in terms of the classification accuracy with respect to the collected real-time ground truth data. The SOM neural network provided the highest overall accuracy when a GIS layer of land type classification (with respect to the period of inundation by regular flooding) was used in the network. Using this method, the overall accuracy was around 15% higher than the previously mentioned traditional classifiers. It also achieved higher accuracies for more classes in comparison to the other classifiers. However, it was also observed that different classifiers produced better accuracy for different classes. Therefore, the investigation was extended to consider Multiple Classifier Combination (MCC) techniques, which is a recently emerging research area in pattern recognition. The study has tested some of these techniques to improve the classification accuracy by harnessing the goodness of the constituent classifiers. A Rule-based Contention Resolution method of combination was developed, which exhibited an improvement in the overall accuracy of about 2% in comparison to its best constituent (SOM) classifier. The next phase of the study involved the design of an architecture for an intelligent image processing and classification system (named ISRIPaC) that could integrate the extended methodologies mentioned above. Finally, the architecture was implemented in a prototype and its viability was evaluated using a set of real data. The originality of the ISRIPaC architecture lies in the realisation of the concept of a complete system that can intelligently cover all the steps of image processing classification and utilise standardised metadata in addition to a knowledge base in determining the appropriate methods and course of action for the given task. The implemented prototype of the ISRIPaC architecture is a federated system that integrates the CLIPS expert system shell, the IDRISI Kilimanjaro image processing and GIS software, and the domain experts' knowledge via a control agent written in Visual C++. It starts with data assessment and pre-processing and ends up with image classification and accuracy assessment. The system is designed to run automatically, where the user merely provides the initial information regarding the intended task and the source of available data. The system itself acquires necessary information about the data from metadata files in order to make decisions and perform tasks. The test and evaluation of the prototype demonstrates the viability of the proposed architecture and the possibility of extending the system to perform other image processing tasks and to use different sources of data. The system design presented in this study thus suggests some directions for the development of the next generation of remote sensing image processing and classification systems
    corecore