14,385 research outputs found

    Human-machine Interactive Tissue Prototype Learning for Label-efficient Histopathology Image Segmentation

    Full text link
    Recently, deep neural networks have greatly advanced histopathology image segmentation but usually require abundant annotated data. However, due to the gigapixel scale of whole slide images and pathologists' heavy daily workload, obtaining pixel-level labels for supervised learning in clinical practice is often infeasible. Alternatively, weakly-supervised segmentation methods have been explored with less laborious image-level labels, but their performance is unsatisfactory due to the lack of dense supervision. Inspired by the recent success of self-supervised learning methods, we present a label-efficient tissue prototype dictionary building pipeline and propose to use the obtained prototypes to guide histopathology image segmentation. Particularly, taking advantage of self-supervised contrastive learning, an encoder is trained to project the unlabeled histopathology image patches into a discriminative embedding space where these patches are clustered to identify the tissue prototypes by efficient pathologists' visual examination. Then, the encoder is used to map the images into the embedding space and generate pixel-level pseudo tissue masks by querying the tissue prototype dictionary. Finally, the pseudo masks are used to train a segmentation network with dense supervision for better performance. Experiments on two public datasets demonstrate that our human-machine interactive tissue prototype learning method can achieve comparable segmentation performance as the fully-supervised baselines with less annotation burden and outperform other weakly-supervised methods. Codes will be available upon publication.Comment: IPMI2023 camera read

    Deep Adaptive Feature Embedding with Local Sample Distributions for Person Re-identification

    Full text link
    Person re-identification (re-id) aims to match pedestrians observed by disjoint camera views. It attracts increasing attention in computer vision due to its importance to surveillance system. To combat the major challenge of cross-view visual variations, deep embedding approaches are proposed by learning a compact feature space from images such that the Euclidean distances correspond to their cross-view similarity metric. However, the global Euclidean distance cannot faithfully characterize the ideal similarity in a complex visual feature space because features of pedestrian images exhibit unknown distributions due to large variations in poses, illumination and occlusion. Moreover, intra-personal training samples within a local range are robust to guide deep embedding against uncontrolled variations, which however, cannot be captured by a global Euclidean distance. In this paper, we study the problem of person re-id by proposing a novel sampling to mine suitable \textit{positives} (i.e. intra-class) within a local range to improve the deep embedding in the context of large intra-class variations. Our method is capable of learning a deep similarity metric adaptive to local sample structure by minimizing each sample's local distances while propagating through the relationship between samples to attain the whole intra-class minimization. To this end, a novel objective function is proposed to jointly optimize similarity metric learning, local positive mining and robust deep embedding. This yields local discriminations by selecting local-ranged positive samples, and the learned features are robust to dramatic intra-class variations. Experiments on benchmarks show state-of-the-art results achieved by our method.Comment: Published on Pattern Recognitio

    Support Neighbor Loss for Person Re-Identification

    Full text link
    Person re-identification (re-ID) has recently been tremendously boosted due to the advancement of deep convolutional neural networks (CNN). The majority of deep re-ID methods focus on designing new CNN architectures, while less attention is paid on investigating the loss functions. Verification loss and identification loss are two types of losses widely used to train various deep re-ID models, both of which however have limitations. Verification loss guides the networks to generate feature embeddings of which the intra-class variance is decreased while the inter-class ones is enlarged. However, training networks with verification loss tends to be of slow convergence and unstable performance when the number of training samples is large. On the other hand, identification loss has good separating and scalable property. But its neglect to explicitly reduce the intra-class variance limits its performance on re-ID, because the same person may have significant appearance disparity across different camera views. To avoid the limitations of the two types of losses, we propose a new loss, called support neighbor (SN) loss. Rather than being derived from data sample pairs or triplets, SN loss is calculated based on the positive and negative support neighbor sets of each anchor sample, which contain more valuable contextual information and neighborhood structure that are beneficial for more stable performance. To ensure scalability and separability, a softmax-like function is formulated to push apart the positive and negative support sets. To reduce intra-class variance, the distance between the anchor's nearest positive neighbor and furthest positive sample is penalized. Integrating SN loss on top of Resnet50, superior re-ID results to the state-of-the-art ones are obtained on several widely used datasets.Comment: Accepted by ACM Multimedia (ACM MM) 201
    • …
    corecore