71,438 research outputs found

    Developmental Stages of Perception and Language Acquisition in a Perceptually Grounded Robot

    Get PDF
    The objective of this research is to develop a system for language learning based on a minimum of pre-wired language-specific functionality, that is compatible with observations of perceptual and language capabilities in the human developmental trajectory. In the proposed system, meaning (in terms of descriptions of events and spatial relations) is extracted from video images based on detection of position, motion, physical contact and their parameters. Mapping of sentence form to meaning is performed by learning grammatical constructions that are retrieved from a construction inventory based on the constellation of closed class items uniquely identifying the target sentence structure. The resulting system displays robust acquisition behavior that reproduces certain observations from developmental studies, with very modest “innate” language specificity

    The Mechanics of Embodiment: A Dialogue on Embodiment and Computational Modeling

    Get PDF
    Embodied theories are increasingly challenging traditional views of cognition by arguing that conceptual representations that constitute our knowledge are grounded in sensory and motor experiences, and processed at this sensorimotor level, rather than being represented and processed abstractly in an amodal conceptual system. Given the established empirical foundation, and the relatively underspecified theories to date, many researchers are extremely interested in embodied cognition but are clamouring for more mechanistic implementations. What is needed at this stage is a push toward explicit computational models that implement sensory-motor grounding as intrinsic to cognitive processes. In this article, six authors from varying backgrounds and approaches address issues concerning the construction of embodied computational models, and illustrate what they view as the critical current and next steps toward mechanistic theories of embodiment. The first part has the form of a dialogue between two fictional characters: Ernest, the ïżœexperimenterïżœ, and Mary, the ïżœcomputational modellerïżœ. The dialogue consists of an interactive sequence of questions, requests for clarification, challenges, and (tentative) answers, and touches the most important aspects of grounded theories that should inform computational modeling and, conversely, the impact that computational modeling could have on embodied theories. The second part of the article discusses the most important open challenges for embodied computational modelling

    Global sensitivity analysis of computer models with functional inputs

    Get PDF
    Global sensitivity analysis is used to quantify the influence of uncertain input parameters on the response variability of a numerical model. The common quantitative methods are applicable to computer codes with scalar input variables. This paper aims to illustrate different variance-based sensitivity analysis techniques, based on the so-called Sobol indices, when some input variables are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary meta-modeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked Generalized Linear Models (GLM) or Generalized Additive Models (GAM). The ``mean'' model allows to estimate the sensitivity indices of each scalar input variables, while the ``dispersion'' model allows to derive the total sensitivity index of the functional input variables. The proposed approach is compared to some classical SA methodologies on an analytical function. Lastly, the proposed methodology is applied to a concrete industrial computer code that simulates the nuclear fuel irradiation

    Tangible user interfaces : past, present and future directions

    Get PDF
    In the last two decades, Tangible User Interfaces (TUIs) have emerged as a new interface type that interlinks the digital and physical worlds. Drawing upon users' knowledge and skills of interaction with the real non-digital world, TUIs show a potential to enhance the way in which people interact with and leverage digital information. However, TUI research is still in its infancy and extensive research is required in or- der to fully understand the implications of tangible user interfaces, to develop technologies that further bridge the digital and the physical, and to guide TUI design with empirical knowledge. This paper examines the existing body of work on Tangible User In- terfaces. We start by sketching the history of tangible user interfaces, examining the intellectual origins of this ïŹeld. We then present TUIs in a broader context, survey application domains, and review frame- works and taxonomies. We also discuss conceptual foundations of TUIs including perspectives from cognitive sciences, phycology, and philoso- phy. Methods and technologies for designing, building, and evaluating TUIs are also addressed. Finally, we discuss the strengths and limita- tions of TUIs and chart directions for future research

    Towards a Theory of the Laminar Architecture of Cerebral Cortex: Computational Clues from the Visual System

    Full text link
    One of the most exciting and open research frontiers in neuroscience is that of seeking to understand the functional roles of the layers of cerebral cortex. New experimental techniques for probing the laminar circuitry of cortex have recently been developed, opening up novel opportunities for investigating ho1v its six-layered architecture contributes to perception and cognition. The task of trying to interpret this complex structure can be facilitated by theoretical analyses of the types of computations that cortex is carrying out, and of how these might be implemented in specific cortical circuits. We have recently developed a detailed neural model of how the parvocellular stream of the visual cortex utilizes its feedforward, feedback, and horizontal interactions for purposes of visual filtering, attention, and perceptual grouping. This model, called LAMINART, shows how these perceptual processes relate to the mechanisms which ensure stable development of cortical circuits in the infant, and to the continued stability of learning in the adult. The present article reviews this laminar theory of visual cortex, considers how it may be generalized towards a more comprehensive theory that encompasses other cortical areas and cognitive processes, and shows how its laminar framework generates a variety of testable predictions.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-0409); National Science Foundation (IRI 94-01659); Office of Naval Research (N00014-92-1-1309, N00014-95-1-0657
    • 

    corecore