56,153 research outputs found

    Learning shape placements by example

    Get PDF
    We present a method to learn and propagate shape placements in 2D polygonal scenes from a few examples provided by a user. The placement of a shape is modeled as an oriented bounding box. Simple geometric relationships between this bounding box and nearby scene polygons define a feature set for the placement. The feature sets of all example placements are then used to learn a probabilistic model over all possible placements and scenes. With this model, we can generate a new set of placements with similar geometric relationships in any given scene. We introduce extensions that enable propagation and generation of shapes in 3D scenes, as well as the application of a learned modeling session to large scenes without additional user interaction. These concepts allow us to generate complex scenes with thousands of objects with relatively little user interaction

    Learning to Place New Objects

    Full text link
    The ability to place objects in the environment is an important skill for a personal robot. An object should not only be placed stably, but should also be placed in its preferred location/orientation. For instance, a plate is preferred to be inserted vertically into the slot of a dish-rack as compared to be placed horizontally in it. Unstructured environments such as homes have a large variety of object types as well as of placing areas. Therefore our algorithms should be able to handle placing new object types and new placing areas. These reasons make placing a challenging manipulation task. In this work, we propose a supervised learning algorithm for finding good placements given the point-clouds of the object and the placing area. It learns to combine the features that capture support, stability and preferred placements using a shared sparsity structure in the parameters. Even when neither the object nor the placing area is seen previously in the training set, our algorithm predicts good placements. In extensive experiments, our method enables the robot to stably place several new objects in several new placing areas with 98% success-rate; and it placed the objects in their preferred placements in 92% of the cases

    Pick and Place Without Geometric Object Models

    Full text link
    We propose a novel formulation of robotic pick and place as a deep reinforcement learning (RL) problem. Whereas most deep RL approaches to robotic manipulation frame the problem in terms of low level states and actions, we propose a more abstract formulation. In this formulation, actions are target reach poses for the hand and states are a history of such reaches. We show this approach can solve a challenging class of pick-place and regrasping problems where the exact geometry of the objects to be handled is unknown. The only information our method requires is: 1) the sensor perception available to the robot at test time; 2) prior knowledge of the general class of objects for which the system was trained. We evaluate our method using objects belonging to two different categories, mugs and bottles, both in simulation and on real hardware. Results show a major improvement relative to a shape primitives baseline

    Learning Manipulation under Physics Constraints with Visual Perception

    Full text link
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure.Comment: arXiv admin note: substantial text overlap with arXiv:1609.04861, arXiv:1711.00267, arXiv:1604.0006

    Learning Manipulation under Physics Constraints with Visual Perception

    No full text
    Understanding physical phenomena is a key competence that enables humans and animals to act and interact under uncertain perception in previously unseen environments containing novel objects and their configurations. In this work, we consider the problem of autonomous block stacking and explore solutions to learning manipulation under physics constraints with visual perception inherent to the task. Inspired by the intuitive physics in humans, we first present an end-to-end learning-based approach to predict stability directly from appearance, contrasting a more traditional model-based approach with explicit 3D representations and physical simulation. We study the model's behavior together with an accompanied human subject test. It is then integrated into a real-world robotic system to guide the placement of a single wood block into the scene without collapsing existing tower structure. To further automate the process of consecutive blocks stacking, we present an alternative approach where the model learns the physics constraint through the interaction with the environment, bypassing the dedicated physics learning as in the former part of this work. In particular, we are interested in the type of tasks that require the agent to reach a given goal state that may be different for every new trial. Thereby we propose a deep reinforcement learning framework that learns policies for stacking tasks which are parametrized by a target structure
    • …
    corecore