5,928 research outputs found

    Learning semantic sentence representations from visually grounded language without lexical knowledge

    Get PDF
    Current approaches to learning semantic representations of sentences often use prior word-level knowledge. The current study aims to leverage visual information in order to capture sentence level semantics without the need for word embeddings. We use a multimodal sentence encoder trained on a corpus of images with matching text captions to produce visually grounded sentence embeddings. Deep Neural Networks are trained to map the two modalities to a common embedding space such that for an image the corresponding caption can be retrieved and vice versa. We show that our model achieves results comparable to the current state-of-the-art on two popular image-caption retrieval benchmark data sets: MSCOCO and Flickr8k. We evaluate the semantic content of the resulting sentence embeddings using the data from the Semantic Textual Similarity benchmark task and show that the multimodal embeddings correlate well with human semantic similarity judgements. The system achieves state-of-the-art results on several of these benchmarks, which shows that a system trained solely on multimodal data, without assuming any word representations, is able to capture sentence level semantics. Importantly, this result shows that we do not need prior knowledge of lexical level semantics in order to model sentence level semantics. These findings demonstrate the importance of visual information in semantics

    Multimodal Grounding for Language Processing

    Get PDF
    This survey discusses how recent developments in multimodal processing facilitate conceptual grounding of language. We categorize the information flow in multimodal processing with respect to cognitive models of human information processing and analyze different methods for combining multimodal representations. Based on this methodological inventory, we discuss the benefit of multimodal grounding for a variety of language processing tasks and the challenges that arise. We particularly focus on multimodal grounding of verbs which play a crucial role for the compositional power of language.Comment: The paper has been published in the Proceedings of the 27 Conference of Computational Linguistics. Please refer to this version for citations: https://www.aclweb.org/anthology/papers/C/C18/C18-1197

    Towards an Indexical Model of Situated Language Comprehension for Cognitive Agents in Physical Worlds

    Full text link
    We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.Comment: Advances in Cognitive Systems 3 (2014

    Modelling multi-modal language learning: From sentences to words

    Get PDF

    Language with Vision: a Study on Grounded Word and Sentence Embeddings

    Full text link
    Grounding language in vision is an active field of research seeking to construct cognitively plausible word and sentence representations by incorporating perceptual knowledge from vision into text-based representations. Despite many attempts at language grounding, achieving an optimal equilibrium between textual representations of the language and our embodied experiences remains an open field. Some common concerns are the following. Is visual grounding advantageous for abstract words, or is its effectiveness restricted to concrete words? What is the optimal way of bridging the gap between text and vision? To what extent is perceptual knowledge from images advantageous for acquiring high-quality embeddings? Leveraging the current advances in machine learning and natural language processing, the present study addresses these questions by proposing a simple yet very effective computational grounding model for pre-trained word embeddings. Our model effectively balances the interplay between language and vision by aligning textual embeddings with visual information while simultaneously preserving the distributional statistics that characterize word usage in text corpora. By applying a learned alignment, we are able to indirectly ground unseen words including abstract words. A series of evaluations on a range of behavioural datasets shows that visual grounding is beneficial not only for concrete words but also for abstract words, lending support to the indirect theory of abstract concepts. Moreover, our approach offers advantages for contextualized embeddings, such as those generated by BERT, but only when trained on corpora of modest, cognitively plausible sizes. Code and grounded embeddings for English are available at https://github.com/Hazel1994/Visually_Grounded_Word_Embeddings_2
    • …
    corecore