44 research outputs found

    Computer aided diagnosis algorithms for digital microscopy

    Get PDF
    Automatic analysis and information extraction from an image is still a highly chal- lenging research problem in the computer vision area, attempting to describe the image content with computational and mathematical techniques. Moreover the in- formation extracted from the image should be meaningful and as most discrimi- natory as possible, since it will be used to categorize its content according to the analysed problem. In the Medical Imaging domain this issue is even more felt because many important decisions that affect the patient care, depend on the use- fulness of the information extracted from the image. Manage medical image is even more complicated not only due to the importance of the problem, but also because it needs a fair amount of prior medical knowledge to be able to represent with data the visual information to which pathologist refer. Today medical decisions that impact patient care rely on the results of laboratory tests to a greater extent than ever before, due to the marked expansion in the number and complexity of offered tests. These developments promise to improve the care of patients, but the more increase the number and complexity of the tests, the more increases the possibility to misapply and misinterpret the test themselves, leading to inappropriate diagnosis and therapies. Moreover, with the increased number of tests also the amount of data to be analysed increases, forcing pathologists to devote much time to the analysis of the tests themselves rather than to patient care and the prescription of the right therapy, especially considering that most of the tests performed are just check up tests and most of the analysed samples come from healthy patients. Then, a quantitative evaluation of medical images is really essential to overcome uncertainty and subjectivity, but also to greatly reduce the amount of data and the timing for the analysis. In the last few years, many computer assisted diagno- sis systems have been developed, attempting to mimic pathologists by extracting features from the images. Image analysis involves complex algorithms to identify and characterize cells or tissues using image pattern recognition technology. This thesis addresses the main problems associated to the digital microscopy analysis in histology and haematology diagnosis, with the development of algorithms for the extraction of useful information from different digital images, but able to distinguish different biological structures in the images themselves. The proposed methods not only aim to improve the degree of accuracy of the analysis, and reducing time, if used as the only means of diagnoses, but also they can be used as intermediate tools for skimming the number of samples to be analysed directly from the pathologist, or as double check systems to verify the correct results of the automated facilities used today

    Medical image segmentation using edge-based active contours.

    Get PDF
    The main purpose of image segmentation using active contours is to extract the object of interest in images based on textural or boundary information. Active contour methods have been widely used in image segmentation applications due to their good boundary detection accuracy. In the context of medical image segmentation, weak edges and inhomogeneities remain important issues that may limit the accuracy of any segmentation method formulated using active contour models. This thesis develops new methods for segmentation of medical images based on the active contour models. Three different approaches are pursued: The first chapter proposes a novel external force that integrates gradient vector flow (GVF) field forces and balloon forces based on a weighting factor computed according to local image features. The proposed external force reduces noise sensitivity, improves performance over weak edges and allows initialization with a single manually selected point. The next chapter proposes a level set method that is based on the minimization of an objective energy functional whose energy terms are weighted according to their relative importance in detecting boundaries. This relative importance is computed based on local edge features collected from the adjacent region inside and outside of the evolving contour. The local edge features employed are the edge intensity and the degree of alignment between the images gradient vector flow field and the evolving contours normal. Finally, chapter 5 presents a framework that is capable of segmenting the cytoplasm of each individual cell and can address the problem of segmenting overlapping cervical cells using edge-based active contours. The main goal of our methodology is to provide significantly fully segmented cells with high accuracy segmentation results. All of the proposed methods are then evaluated for segmentation of various regions in real MRI and CT slices, X-ray images and cervical cell images. Evaluation results show that the proposed method leads to more accurate boundary detection results than other edge-based active contour methods (snake and level-set), particularly around weak edges

    Psr1p interacts with SUN/sad1p and EB1/mal3p to establish the bipolar spindle

    Get PDF
    Regular Abstracts - Sunday Poster Presentations: no. 382During mitosis, interpolar microtubules from two spindle pole bodies (SPBs) interdigitate to create an antiparallel microtubule array for accommodating numerous regulatory proteins. Among these proteins, the kinesin-5 cut7p/Eg5 is the key player responsible for sliding apart antiparallel microtubules and thus helps in establishing the bipolar spindle. At the onset of mitosis, two SPBs are adjacent to one another with most microtubules running nearly parallel toward the nuclear envelope, creating an unfavorable microtubule configuration for the kinesin-5 kinesins. Therefore, how the cell organizes the antiparallel microtubule array in the first place at mitotic onset remains enigmatic. Here, we show that a novel protein psrp1p localizes to the SPB and plays a key role in organizing the antiparallel microtubule array. The absence of psr1+ leads to a transient monopolar spindle and massive chromosome loss. Further functional characterization demonstrates that psr1p is recruited to the SPB through interaction with the conserved SUN protein sad1p and that psr1p physically interacts with the conserved microtubule plus tip protein mal3p/EB1. These results suggest a model that psr1p serves as a linking protein between sad1p/SUN and mal3p/EB1 to allow microtubule plus ends to be coupled to the SPBs for organization of an antiparallel microtubule array. Thus, we conclude that psr1p is involved in organizing the antiparallel microtubule array in the first place at mitosis onset by interaction with SUN/sad1p and EB1/mal3p, thereby establishing the bipolar spindle.postprin
    corecore