5,154 research outputs found

    Discovery of Linguistic Relations Using Lexical Attraction

    Full text link
    This work has been motivated by two long term goals: to understand how humans learn language and to build programs that can understand language. Using a representation that makes the relevant features explicit is a prerequisite for successful learning and understanding. Therefore, I chose to represent relations between individual words explicitly in my model. Lexical attraction is defined as the likelihood of such relations. I introduce a new class of probabilistic language models named lexical attraction models which can represent long distance relations between words and I formalize this new class of models using information theory. Within the framework of lexical attraction, I developed an unsupervised language acquisition program that learns to identify linguistic relations in a given sentence. The only explicitly represented linguistic knowledge in the program is lexical attraction. There is no initial grammar or lexicon built in and the only input is raw text. Learning and processing are interdigitated. The processor uses the regularities detected by the learner to impose structure on the input. This structure enables the learner to detect higher level regularities. Using this bootstrapping procedure, the program was trained on 100 million words of Associated Press material and was able to achieve 60% precision and 50% recall in finding relations between content-words. Using knowledge of lexical attraction, the program can identify the correct relations in syntactically ambiguous sentences such as ``I saw the Statue of Liberty flying over New York.''Comment: dissertation, 56 page

    Elimination of Spurious Ambiguity in Transition-Based Dependency Parsing

    Get PDF
    We present a novel technique to remove spurious ambiguity from transition systems for dependency parsing. Our technique chooses a canonical sequence of transition operations (computation) for a given dependency tree. Our technique can be applied to a large class of bottom-up transition systems, including for instance Nivre (2004) and Attardi (2006)

    Toric grammars: a new statistical approach to natural language modeling

    Full text link
    We propose a new statistical model for computational linguistics. Rather than trying to estimate directly the probability distribution of a random sentence of the language, we define a Markov chain on finite sets of sentences with many finite recurrent communicating classes and define our language model as the invariant probability measures of the chain on each recurrent communicating class. This Markov chain, that we call a communication model, recombines at each step randomly the set of sentences forming its current state, using some grammar rules. When the grammar rules are fixed and known in advance instead of being estimated on the fly, we can prove supplementary mathematical properties. In particular, we can prove in this case that all states are recurrent states, so that the chain defines a partition of its state space into finite recurrent communicating classes. We show that our approach is a decisive departure from Markov models at the sentence level and discuss its relationships with Context Free Grammars. Although the toric grammars we use are closely related to Context Free Grammars, the way we generate the language from the grammar is qualitatively different. Our communication model has two purposes. On the one hand, it is used to define indirectly the probability distribution of a random sentence of the language. On the other hand it can serve as a (crude) model of language transmission from one speaker to another speaker through the communication of a (large) set of sentences

    Learning Language from a Large (Unannotated) Corpus

    Full text link
    A novel approach to the fully automated, unsupervised extraction of dependency grammars and associated syntax-to-semantic-relationship mappings from large text corpora is described. The suggested approach builds on the authors' prior work with the Link Grammar, RelEx and OpenCog systems, as well as on a number of prior papers and approaches from the statistical language learning literature. If successful, this approach would enable the mining of all the information needed to power a natural language comprehension and generation system, directly from a large, unannotated corpus.Comment: 29 pages, 5 figures, research proposa

    Automatic Extraction of Subcategorization from Corpora

    Full text link
    We describe a novel technique and implemented system for constructing a subcategorization dictionary from textual corpora. Each dictionary entry encodes the relative frequency of occurrence of a comprehensive set of subcategorization classes for English. An initial experiment, on a sample of 14 verbs which exhibit multiple complementation patterns, demonstrates that the technique achieves accuracy comparable to previous approaches, which are all limited to a highly restricted set of subcategorization classes. We also demonstrate that a subcategorization dictionary built with the system improves the accuracy of a parser by an appreciable amount.Comment: 8 pages; requires aclap.sty. To appear in ANLP-9
    • …
    corecore