766 research outputs found

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA

    Rethinking affordance

    Get PDF
    n/a – Critical survey essay retheorising the concept of 'affordance' in digital media context. Lead article in a special issue on the topic, co-edited by the authors for the journal Media Theory

    Affordance-Aware Handovers With Human Arm Mobility Constraints

    Get PDF
    Reasoning about object handover configurations allows an assistive agent to estimate the appropriateness of handover for a receiver with different arm mobility capacities. While there are existing approaches for estimating the effectiveness of handovers, their findings are limited to users without arm mobility impairments and to specific objects. Therefore, current state-of-the-art approaches are unable to hand over novel objects to receivers with different arm mobility capacities. We propose a method that generalises handover behaviours to previously unseen objects, subject to the constraint of a user's arm mobility levels and the task context. We propose a heuristic-guided hierarchically optimised cost whose optimisation adapts object configurations for receivers with low arm mobility. This also ensures that the robot grasps consider the context of the user's upcoming task, i.e., the usage of the object. To understand preferences over handover configurations, we report on the findings of an online study, wherein we presented different handover methods, including ours, to 259259 users with different levels of arm mobility. We find that people's preferences over handover methods are correlated to their arm mobility capacities. We encapsulate these preferences in a statistical relational model (SRL) that is able to reason about the most suitable handover configuration given a receiver's arm mobility and upcoming task. Using our SRL model, we obtained an average handover accuracy of 90.8%90.8\% when generalising handovers to novel objects.Comment: Accepted for RA-L 202
    • …
    corecore