252,839 research outputs found

    MyLearningMentor: a mobile App to support learners participating in MOOCs

    Get PDF
    MOOCs have brought a revolution to education. However, their impact is mainly benefiting people with Higher Education degrees. The lack of support and personalized advice in MOOCs is causing that many of the learners that have not developed work habits and self-learning skills give them up at the first obstacle, and do not see MOOCs as an alternative for their education and training. My Learning Mentor (MLM) is a mobile application that addresses the lack of support and personalized advice for learners in MOOCs. This paper presents the architecture of MLM and practical examples of use. The architecture of MLM is designed to provide MOOC participants with a personalized planning that facilitates them following up the MOOCs they enroll. This planning is adapted to learners' profiles, preferences, priorities and previous performance (measured in time devoted to each task). The architecture of MLM is also designed to provide tips and hints aimed at helping learners develop work habits and study skills, and eventually become self-learners.This work has been funded by the Spanish Ministry of Economy and Competitiveness Project TIN2011-28308-C03-01, the Regional Government of Madrid project S2013/ICE-2715, and the postdoctoral fellowship Alliance 4 Universities. The authors would also like to thank Israel Gutiérrez-Rojas for his contributions to the ideas behind MLM and Ricardo García Pericuesta and Carlos de Frutos Plaza for their work implementing different parts of the architecture

    Explore, Exploit or Listen: Combining Human Feedback and Policy Model to Speed up Deep Reinforcement Learning in 3D Worlds

    Full text link
    We describe a method to use discrete human feedback to enhance the performance of deep learning agents in virtual three-dimensional environments by extending deep-reinforcement learning to model the confidence and consistency of human feedback. This enables deep reinforcement learning algorithms to determine the most appropriate time to listen to the human feedback, exploit the current policy model, or explore the agent's environment. Managing the trade-off between these three strategies allows DRL agents to be robust to inconsistent or intermittent human feedback. Through experimentation using a synthetic oracle, we show that our technique improves the training speed and overall performance of deep reinforcement learning in navigating three-dimensional environments using Minecraft. We further show that our technique is robust to highly innacurate human feedback and can also operate when no human feedback is given

    Preparing for success: a guide to developing effective career decision makers

    Get PDF

    The Importance of Social and Government Learning in Ex Ante Policy Evaluation

    Full text link
    We provide two methodological insights on \emph{ex ante} policy evaluation for macro models of economic development. First, we show that the problems of parameter instability and lack of behavioral constancy can be overcome by considering learning dynamics. Hence, instead of defining social constructs as fixed exogenous parameters, we represent them through stable functional relationships such as social norms. Second, we demonstrate how agent computing can be used for this purpose. By deploying a model of policy prioritization with endogenous government behavior, we estimate the performance of different policy regimes. We find that, while strictly adhering to policy recommendations increases efficiency, the nature of such recipes has a bigger effect. In other words, while it is true that lack of discipline is detrimental to prescription outcomes (a common defense of failed recommendations), it is more important that such prescriptions consider the systemic and adaptive nature of the policymaking process (something neglected by traditional technocratic advice)

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Impartial careers education : statutory guidance

    Get PDF

    Complete Issue

    Get PDF

    Claims and confounds in economic experiments

    Get PDF
    We present a distinctiveness, relevance and plausibility (DRP) method for systematically evaluating potential experimental confounds. A claim is a statement being inferred on the basis of experimental data analysis. A potential confound is a statement providing a prima facie reason why the claim is not justified (other than internal weakness). In evaluating whether a potential confound is problematic, we can start by asking whether the potential confound is distinctive from the claim; we can then ask whether it is relevant for the claim; and we can conclude by asking whether it is plausible in the light of the evidence
    • …
    corecore