15,959 research outputs found

    Deep Predictive Policy Training using Reinforcement Learning

    Full text link
    Skilled robot task learning is best implemented by predictive action policies due to the inherent latency of sensorimotor processes. However, training such predictive policies is challenging as it involves finding a trajectory of motor activations for the full duration of the action. We propose a data-efficient deep predictive policy training (DPPT) framework with a deep neural network policy architecture which maps an image observation to a sequence of motor activations. The architecture consists of three sub-networks referred to as the perception, policy and behavior super-layers. The perception and behavior super-layers force an abstraction of visual and motor data trained with synthetic and simulated training samples, respectively. The policy super-layer is a small sub-network with fewer parameters that maps data in-between the abstracted manifolds. It is trained for each task using methods for policy search reinforcement learning. We demonstrate the suitability of the proposed architecture and learning framework by training predictive policies for skilled object grasping and ball throwing on a PR2 robot. The effectiveness of the method is illustrated by the fact that these tasks are trained using only about 180 real robot attempts with qualitative terminal rewards.Comment: This work is submitted to IEEE/RSJ International Conference on Intelligent Robots and Systems 2017 (IROS2017

    Algorithmic Fairness from a Non-ideal Perspective

    Get PDF
    Inspired by recent breakthroughs in predictive modeling, practitioners in both industry and government have turned to machine learning with hopes of operationalizing predictions to drive automated decisions. Unfortunately, many social desiderata concerning consequential decisions, such as justice or fairness, have no natural formulation within a purely predictive framework. In efforts to mitigate these problems, researchers have proposed a variety of metrics for quantifying deviations from various statistical parities that we might expect to observe in a fair world and offered a variety of algorithms in attempts to satisfy subsets of these parities or to trade o the degree to which they are satised against utility. In this paper, we connect this approach to fair machine learning to the literature on ideal and non-ideal methodological approaches in political philosophy. The ideal approach requires positing the principles according to which a just world would operate. In the most straightforward application of ideal theory, one supports a proposed policy by arguing that it closes a discrepancy between the real and the perfectly just world. However, by failing to account for the mechanisms by which our non-ideal world arose, the responsibilities of various decision-makers, and the impacts of proposed policies, naive applications of ideal thinking can lead to misguided interventions. In this paper, we demonstrate a connection between the fair machine learning literature and the ideal approach in political philosophy, and argue that the increasingly apparent shortcomings of proposed fair machine learning algorithms reflect broader troubles faced by the ideal approach. We conclude with a critical discussion of the harms of misguided solutions, a reinterpretation of impossibility results, and directions for future researc

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    {iFair}: {L}earning Individually Fair Data Representations for Algorithmic Decision Making

    Get PDF
    People are rated and ranked, towards algorithmic decision making in an increasing number of applications, typically based on machine learning. Research on how to incorporate fairness into such tasks has prevalently pursued the paradigm of group fairness: ensuring that each ethnic or social group receives its fair share in the outcome of classifiers and rankings. In contrast, the alternative paradigm of individual fairness has received relatively little attention. This paper introduces a method for probabilistically clustering user records into a low-rank representation that captures individual fairness yet also achieves high accuracy in classification and regression models. Our notion of individual fairness requires that users who are similar in all task-relevant attributes such as job qualification, and disregarding all potentially discriminating attributes such as gender, should have similar outcomes. Since the case for fairness is ubiquitous across many tasks, we aim to learn general representations that can be applied to arbitrary downstream use-cases. We demonstrate the versatility of our method by applying it to classification and learning-to-rank tasks on two real-world datasets. Our experiments show substantial improvements over the best prior work for this setting

    Navigating Occluded Intersections with Autonomous Vehicles using Deep Reinforcement Learning

    Full text link
    Providing an efficient strategy to navigate safely through unsignaled intersections is a difficult task that requires determining the intent of other drivers. We explore the effectiveness of Deep Reinforcement Learning to handle intersection problems. Using recent advances in Deep RL, we are able to learn policies that surpass the performance of a commonly-used heuristic approach in several metrics including task completion time and goal success rate and have limited ability to generalize. We then explore a system's ability to learn active sensing behaviors to enable navigating safely in the case of occlusions. Our analysis, provides insight into the intersection handling problem, the solutions learned by the network point out several shortcomings of current rule-based methods, and the failures of our current deep reinforcement learning system point to future research directions.Comment: IEEE International Conference on Robotics and Automation (ICRA 2018
    corecore