31,861 research outputs found

    Fairness-Aware Recommendation of Information Curators

    Full text link
    This paper highlights our ongoing efforts to create effective information curator recommendation models that can be personalized for individual users, while maintaining important fairness properties. Concretely, we introduce the problem of information curator recommendation, provide a high-level overview of a fairness-aware recommender, and introduce some preliminary experimental evidence over a real-world Twitter dataset. We conclude with some thoughts on future directions.Comment: 5 pages, 3 figures, The 2nd FATREC Workshop on Responsible Recommendation at RecSys, 201

    Personalized Thread Recommendation for MOOC Discussion Forums

    Full text link
    Social learning, i.e., students learning from each other through social interactions, has the potential to significantly scale up instruction in online education. In many cases, such as in massive open online courses (MOOCs), social learning is facilitated through discussion forums hosted by course providers. In this paper, we propose a probabilistic model for the process of learners posting on such forums, using point processes. Different from existing works, our method integrates topic modeling of the post text, timescale modeling of the decay in post activity over time, and learner topic interest modeling into a single model, and infers this information from user data. Our method also varies the excitation levels induced by posts according to the thread structure, to reflect typical notification settings in discussion forums. We experimentally validate the proposed model on three real-world MOOC datasets, with the largest one containing up to 6,000 learners making 40,000 posts in 5,000 threads. Results show that our model excels at thread recommendation, achieving significant improvement over a number of baselines, thus showing promise of being able to direct learners to threads that they are interested in more efficiently. Moreover, we demonstrate analytics that our model parameters can provide, such as the timescales of different topic categories in a course.Comment: To appear at ECML-PKDD 201

    Joint Item Recommendation and Attribute Inference: An Adaptive Graph Convolutional Network Approach

    Full text link
    In many recommender systems, users and items are associated with attributes, and users show preferences to items. The attribute information describes users'(items') characteristics and has a wide range of applications, such as user profiling, item annotation, and feature-enhanced recommendation. As annotating user (item) attributes is a labor intensive task, the attribute values are often incomplete with many missing attribute values. Therefore, item recommendation and attribute inference have become two main tasks in these platforms. Researchers have long converged that user (item) attributes and the preference behavior are highly correlated. Some researchers proposed to leverage one kind of data for the remaining task, and showed to improve performance. Nevertheless, these models either neglected the incompleteness of user (item) attributes or regarded the correlation of the two tasks with simple models, leading to suboptimal performance of these two tasks. To this end, in this paper, we define these two tasks in an attributed user-item bipartite graph, and propose an Adaptive Graph Convolutional Network (AGCN) approach for joint item recommendation and attribute inference. The key idea of AGCN is to iteratively perform two parts: 1) Learning graph embedding parameters with previously learned approximated attribute values to facilitate two tasks; 2) Sending the approximated updated attribute values back to the attributed graph for better graph embedding learning. Therefore, AGCN could adaptively adjust the graph embedding learning parameters by incorporating both the given attributes and the estimated attribute values, in order to provide weakly supervised information to refine the two tasks. Extensive experimental results on three real-world datasets clearly show the effectiveness of the proposed model.Comment: Accepted by SIGIR202

    Try This Instead: Personalized and Interpretable Substitute Recommendation

    Full text link
    As a fundamental yet significant process in personalized recommendation, candidate generation and suggestion effectively help users spot the most suitable items for them. Consequently, identifying substitutable items that are interchangeable opens up new opportunities to refine the quality of generated candidates. When a user is browsing a specific type of product (e.g., a laptop) to buy, the accurate recommendation of substitutes (e.g., better equipped laptops) can offer the user more suitable options to choose from, thus substantially increasing the chance of a successful purchase. However, existing methods merely treat this problem as mining pairwise item relationships without the consideration of users' personal preferences. Moreover, the substitutable relationships are implicitly identified through the learned latent representations of items, leading to uninterpretable recommendation results. In this paper, we propose attribute-aware collaborative filtering (A2CF) to perform substitute recommendation by addressing issues from both personalization and interpretability perspectives. Instead of directly modelling user-item interactions, we extract explicit and polarized item attributes from user reviews with sentiment analysis, whereafter the representations of attributes, users, and items are simultaneously learned. Then, by treating attributes as the bridge between users and items, we can thoroughly model the user-item preferences (i.e., personalization) and item-item relationships (i.e., substitution) for recommendation. In addition, A2CF is capable of generating intuitive interpretations by analyzing which attributes a user currently cares the most and comparing the recommended substitutes with her/his currently browsed items at an attribute level. The recommendation effectiveness and interpretation quality of A2CF are demonstrated via extensive experiments on three real datasets.Comment: To appear in SIGIR'2

    A Location-Sentiment-Aware Recommender System for Both Home-Town and Out-of-Town Users

    Full text link
    Spatial item recommendation has become an important means to help people discover interesting locations, especially when people pay a visit to unfamiliar regions. Some current researches are focusing on modelling individual and collective geographical preferences for spatial item recommendation based on users' check-in records, but they fail to explore the phenomenon of user interest drift across geographical regions, i.e., users would show different interests when they travel to different regions. Besides, they ignore the influence of public comments for subsequent users' check-in behaviors. Specifically, it is intuitive that users would refuse to check in to a spatial item whose historical reviews seem negative overall, even though it might fit their interests. Therefore, it is necessary to recommend the right item to the right user at the right location. In this paper, we propose a latent probabilistic generative model called LSARS to mimic the decision-making process of users' check-in activities both in home-town and out-of-town scenarios by adapting to user interest drift and crowd sentiments, which can learn location-aware and sentiment-aware individual interests from the contents of spatial items and user reviews. Due to the sparsity of user activities in out-of-town regions, LSARS is further designed to incorporate the public preferences learned from local users' check-in behaviors. Finally, we deploy LSARS into two practical application scenes: spatial item recommendation and target user discovery. Extensive experiments on two large-scale location-based social networks (LBSNs) datasets show that LSARS achieves better performance than existing state-of-the-art methods.Comment: Accepted by KDD 201

    Recommender Systems with Characterized Social Regularization

    Full text link
    Social recommendation, which utilizes social relations to enhance recommender systems, has been gaining increasing attention recently with the rapid development of online social network. Existing social recommendation methods are based on the fact that users preference or decision is influenced by their social friends' behaviors. However, they assume that the influences of social relation are always the same, which violates the fact that users are likely to share preference on diverse products with different friends. In this paper, we present a novel CSR (short for Characterized Social Regularization) model by designing a universal regularization term for modeling variable social influence. Our proposed model can be applied to both explicit and implicit iteration. Extensive experiments on a real-world dataset demonstrate that CSR significantly outperforms state-of-the-art social recommendation methods.Comment: to appear in CIKM 201

    D-Sempre: Learning Deep Semantic-Preserving Embeddings for User interests-Social Contents Modeling

    Full text link
    Exponential growth of social media consumption demands effective user interests-social contents modeling for more personalized recommendation and social media summarization. However, due to the heterogeneous nature of social contents, traditional approaches lack the ability of capturing the hidden semantic correlations across these multi-modal data, which leads to semantic gaps between social content understanding and user interests. To effectively bridge the semantic gaps, we propose a novel deep learning framework for user interests-social contents modeling. We first mine and parse data, i.e. textual content, visual content, social context and social relation, from heterogeneous social media feeds. Then, we design a two-branch network to map the social contents and users into a same latent space. Particularly, the network is trained by a large margin objective that combines a cross-instance distance constraint with a within-instance semantic-preserving constraint in an end-to- end manner. At last, a Deep Semantic-Preserving Embedding (D-Sempre) is learned, and the ranking results can be given by calculating distances between social contents and users. To demonstrate the effectiveness of D-Sempre in user interests-social contents modeling, we construct a Twitter dataset and conduct extensive experiments on it. As a result, D-Sempre effectively integrates the multi-modal data from heterogeneous social media feeds and captures the hidden semantic correlations between users' interests and social contents.Comment: ACM Multimedi

    Integrating Heterogeneous Information via Flexible Regularization Framework for Recommendation

    Full text link
    Recently, there is a surge of social recommendation, which leverages social relations among users to improve recommendation performance. However, in many applications, social relations are absent or very sparse. Meanwhile, the attribute information of users or items may be rich. It is a big challenge to exploit these attribute information for the improvement of recommendation performance. In this paper, we organize objects and relations in recommendation system as a heterogeneous information network, and introduce meta path based similarity measure to evaluate the similarity of users or items. Furthermore, a matrix factorization based dual regularization framework SimMF is proposed to flexibly integrate different types of information through adopting the similarity of users and items as regularization on latent factors of users and items. Extensive experiments not only validate the effectiveness of SimMF but also reveal some interesting findings. We find that attribute information of users and items can significantly improve recommendation accuracy, and their contribution seems more important than that of social relations. The experiments also reveal that different regularization models have obviously different impact on users and items.Comment: 12 pages, 5 figure

    A Synthetic Approach for Recommendation: Combining Ratings, Social Relations, and Reviews

    Full text link
    Recommender systems (RSs) provide an effective way of alleviating the information overload problem by selecting personalized choices. Online social networks and user-generated content provide diverse sources for recommendation beyond ratings, which present opportunities as well as challenges for traditional RSs. Although social matrix factorization (Social MF) can integrate ratings with social relations and topic matrix factorization can integrate ratings with item reviews, both of them ignore some useful information. In this paper, we investigate the effective data fusion by combining the two approaches, in two steps. First, we extend Social MF to exploit the graph structure of neighbors. Second, we propose a novel framework MR3 to jointly model these three types of information effectively for rating prediction by aligning latent factors and hidden topics. We achieve more accurate rating prediction on two real-life datasets. Furthermore, we measure the contribution of each data source to the proposed framework.Comment: 7 pages, 8 figure

    From Amateurs to Connoisseurs: Modeling the Evolution of User Expertise through Online Reviews

    Full text link
    Recommending products to consumers means not only understanding their tastes, but also understanding their level of experience. For example, it would be a mistake to recommend the iconic film Seven Samurai simply because a user enjoys other action movies; rather, we might conclude that they will eventually enjoy it -- once they are ready. The same is true for beers, wines, gourmet foods -- or any products where users have acquired tastes: the `best' products may not be the most `accessible'. Thus our goal in this paper is to recommend products that a user will enjoy now, while acknowledging that their tastes may have changed over time, and may change again in the future. We model how tastes change due to the very act of consuming more products -- in other words, as users become more experienced. We develop a latent factor recommendation system that explicitly accounts for each user's level of experience. We find that such a model not only leads to better recommendations, but also allows us to study the role of user experience and expertise on a novel dataset of fifteen million beer, wine, food, and movie reviews.Comment: 11 pages, 7 figure
    corecore