2,955 research outputs found

    Learning Coverage Functions and Private Release of Marginals

    Full text link
    We study the problem of approximating and learning coverage functions. A function c:2[n]R+c: 2^{[n]} \rightarrow \mathbf{R}^{+} is a coverage function, if there exists a universe UU with non-negative weights w(u)w(u) for each uUu \in U and subsets A1,A2,,AnA_1, A_2, \ldots, A_n of UU such that c(S)=uiSAiw(u)c(S) = \sum_{u \in \cup_{i \in S} A_i} w(u). Alternatively, coverage functions can be described as non-negative linear combinations of monotone disjunctions. They are a natural subclass of submodular functions and arise in a number of applications. We give an algorithm that for any γ,δ>0\gamma,\delta>0, given random and uniform examples of an unknown coverage function cc, finds a function hh that approximates cc within factor 1+γ1+\gamma on all but δ\delta-fraction of the points in time poly(n,1/γ,1/δ)poly(n,1/\gamma,1/\delta). This is the first fully-polynomial algorithm for learning an interesting class of functions in the demanding PMAC model of Balcan and Harvey (2011). Our algorithms are based on several new structural properties of coverage functions. Using the results in (Feldman and Kothari, 2014), we also show that coverage functions are learnable agnostically with excess 1\ell_1-error ϵ\epsilon over all product and symmetric distributions in time nlog(1/ϵ)n^{\log(1/\epsilon)}. In contrast, we show that, without assumptions on the distribution, learning coverage functions is at least as hard as learning polynomial-size disjoint DNF formulas, a class of functions for which the best known algorithm runs in time 2O~(n1/3)2^{\tilde{O}(n^{1/3})} (Klivans and Servedio, 2004). As an application of our learning results, we give simple differentially-private algorithms for releasing monotone conjunction counting queries with low average error. In particular, for any knk \leq n, we obtain private release of kk-way marginals with average error αˉ\bar{\alpha} in time nO(log(1/αˉ))n^{O(\log(1/\bar{\alpha}))}

    A novel Boolean kernels family for categorical data

    Get PDF
    Kernel based classifiers, such as SVM, are considered state-of-the-art algorithms and are widely used on many classification tasks. However, this kind of methods are hardly interpretable and for this reason they are often considered as black-box models. In this paper, we propose a new family of Boolean kernels for categorical data where features correspond to propositional formulas applied to the input variables. The idea is to create human-readable features to ease the extraction of interpretation rules directly from the embedding space. Experiments on artificial and benchmark datasets show the effectiveness of the proposed family of kernels with respect to established ones, such as RBF, in terms of classification accuracy

    Categorical invariance and structural complexity in human concept learning

    Get PDF
    An alternative account of human concept learning based on an invariance measure of the categorical\ud stimulus is proposed. The categorical invariance model (CIM) characterizes the degree of structural\ud complexity of a Boolean category as a function of its inherent degree of invariance and its cardinality or\ud size. To do this we introduce a mathematical framework based on the notion of a Boolean differential\ud operator on Boolean categories that generates the degrees of invariance (i.e., logical manifold) of the\ud category in respect to its dimensions. Using this framework, we propose that the structural complexity\ud of a Boolean category is indirectly proportional to its degree of categorical invariance and directly\ud proportional to its cardinality or size. Consequently, complexity and invariance notions are formally\ud unified to account for concept learning difficulty. Beyond developing the above unifying mathematical\ud framework, the CIM is significant in that: (1) it precisely predicts the key learning difficulty ordering of\ud the SHJ [Shepard, R. N., Hovland, C. L.,&Jenkins, H. M. (1961). Learning and memorization of classifications.\ud Psychological Monographs: General and Applied, 75(13), 1-42] Boolean category types consisting of three\ud binary dimensions and four positive examples; (2) it is, in general, a good quantitative predictor of the\ud degree of learning difficulty of a large class of categories (in particular, the 41 category types studied\ud by Feldman [Feldman, J. (2000). Minimization of Boolean complexity in human concept learning. Nature,\ud 407, 630-633]); (3) it is, in general, a good quantitative predictor of parity effects for this large class of\ud categories; (4) it does all of the above without free parameters; and (5) it is cognitively plausible (e.g.,\ud cognitively tractable)

    Invariant Synthesis for Incomplete Verification Engines

    Full text link
    We propose a framework for synthesizing inductive invariants for incomplete verification engines, which soundly reduce logical problems in undecidable theories to decidable theories. Our framework is based on the counter-example guided inductive synthesis principle (CEGIS) and allows verification engines to communicate non-provability information to guide invariant synthesis. We show precisely how the verification engine can compute such non-provability information and how to build effective learning algorithms when invariants are expressed as Boolean combinations of a fixed set of predicates. Moreover, we evaluate our framework in two verification settings, one in which verification engines need to handle quantified formulas and one in which verification engines have to reason about heap properties expressed in an expressive but undecidable separation logic. Our experiments show that our invariant synthesis framework based on non-provability information can both effectively synthesize inductive invariants and adequately strengthen contracts across a large suite of programs

    Improving a Strong Neural Parser with Conjunction-Specific Features

    Full text link
    While dependency parsers reach very high overall accuracy, some dependency relations are much harder than others. In particular, dependency parsers perform poorly in coordination construction (i.e., correctly attaching the "conj" relation). We extend a state-of-the-art dependency parser with conjunction-specific features, focusing on the similarity between the conjuncts head words. Training the extended parser yields an improvement in "conj" attachment as well as in overall dependency parsing accuracy on the Stanford dependency conversion of the Penn TreeBank

    Probabilistic Dynamic Logic of Phenomena and Cognition

    Full text link
    The purpose of this paper is to develop further the main concepts of Phenomena Dynamic Logic (P-DL) and Cognitive Dynamic Logic (C-DL), presented in the previous paper. The specific character of these logics is in matching vagueness or fuzziness of similarity measures to the uncertainty of models. These logics are based on the following fundamental notions: generality relation, uncertainty relation, simplicity relation, similarity maximization problem with empirical content and enhancement (learning) operator. We develop these notions in terms of logic and probability and developed a Probabilistic Dynamic Logic of Phenomena and Cognition (P-DL-PC) that relates to the scope of probabilistic models of brain. In our research the effectiveness of suggested formalization is demonstrated by approximation of the expert model of breast cancer diagnostic decisions. The P-DL-PC logic was previously successfully applied to solving many practical tasks and also for modelling of some cognitive processes.Comment: 6 pages, WCCI 2010 IEEE World Congress on Computational Intelligence July, 18-23, 2010 - CCIB, Barcelona, Spain, IJCNN, IEEE Catalog Number: CFP1OUS-DVD, ISBN: 978-1-4244-6917-8, pp. 3361-336
    corecore