1,122 research outputs found

    Dynamics of FitzHugh-Nagumo excitable systems with delayed coupling

    Full text link
    Small lattices of NN nearest neighbor coupled excitable FitzHugh-Nagumo systems, with time-delayed coupling are studied, and compared with systems of FitzHugh-Nagumo oscillators with the same delayed coupling. Bifurcations of equilibria in N=2 case are studied analytically, and it is then numerically confirmed that the same bifurcations are relevant for the dynamics in the case N>2N>2. Bifurcations found include inverse and direct Hopf and fold limit cycle bifurcations. Typical dynamics for different small time-lags and coupling intensities could be excitable with a single globally stable equilibrium, asymptotic oscillatory with symmetric limit cycle, bi-stable with stable equilibrium and a symmetric limit cycle, and again coherent oscillatory but non-symmetric and phase-shifted. For an intermediate range of time-lags inverse sub-critical Hopf and fold limit cycle bifurcations lead to the phenomenon of oscillator death. The phenomenon does not occur in the case of FitzHugh-Nagumo oscillators with the same type of coupling.Comment: accepted by Phys.Rev.

    Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity

    Get PDF
    Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons

    Neural Control of Interlimb Oscillations II. Biped and Quadruped Gaits and Bifurications

    Full text link
    Behavioral data concerning animal and human gaits and gait transitions are simulated as emergent properties of a central pattern generator (CPG) model. The CPG model is a version of the Ellias-Grossberg oscillator. Its neurons obey Hodgkin-Huxley type equations whose excitatory signals operate on a faster time scale than their inhibitory signals in a recurrent on-center off-surround anatomy. A descending command or GO signal activates the gaits and triggers gait transitions as its amplitude increases. A single model CPG can generate both in-phase and anti-phase oscillations at different GO amplitudes. Phase transition from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases. Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop), and the pronk are simulated using this property. Rapid gait transitions are simulated in the order walk, trot, pace, and gallop that occurs in the cat, along with the observed increase in oscillation frequency. Precise control of quadruped gait switching uses GO-dependent. modulation of inhibitory interactions, which generates a different functional anatomy at different arousal levels. The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are simulated, without modulation, by oscillations with the same phase relationships but different waveform shapes at different GO signal levels, much as the duty cycles of the feet are longer in the walk than in the run. Relevant neural data from spinal cord, globus palliclus, and motor cortex, among other structures, are discussedArmy Research Office (DAAL03-88-K-0088); Advanced Research Projects Agency (90-0083); National Science Foundation (IRI-90-24877); Office of Naval Research (N00014-92-J-1309); Air Force Office of Scientific Research (F49620-92-J-0499, F49620-92-J-0225, 90-0128

    Mechanisms of Zero-Lag Synchronization in Cortical Motifs

    Get PDF
    Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of "dynamical relaying" - a mechanism that relies on a specific network motif - has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair - a "resonance pair" - plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain.Comment: 41 pages, 12 figures, and 11 supplementary figure

    Neuronal assembly dynamics in supervised and unsupervised learning scenarios

    Get PDF
    The dynamic formation of groups of neurons—neuronal assemblies—is believed to mediate cognitive phenomena at many levels, but their detailed operation and mechanisms of interaction are still to be uncovered. One hypothesis suggests that synchronized oscillations underpin their formation and functioning, with a focus on the temporal structure of neuronal signals. In this context, we investigate neuronal assembly dynamics in two complementary scenarios: the first, a supervised spike pattern classification task, in which noisy variations of a collection of spikes have to be correctly labeled; the second, an unsupervised, minimally cognitive evolutionary robotics tasks, in which an evolved agent has to cope with multiple, possibly conflicting, objectives. In both cases, the more traditional dynamical analysis of the system’s variables is paired with information-theoretic techniques in order to get a broader picture of the ongoing interactions with and within the network. The neural network model is inspired by the Kuramoto model of coupled phase oscillators and allows one to fine-tune the network synchronization dynamics and assembly configuration. The experiments explore the computational power, redundancy, and generalization capability of neuronal circuits, demonstrating that performance depends nonlinearly on the number of assemblies and neurons in the network and showing that the framework can be exploited to generate minimally cognitive behaviors, with dynamic assembly formation accounting for varying degrees of stimuli modulation of the sensorimotor interactions

    Short Conduction Delays Cause Inhibition Rather than Excitation to Favor Synchrony in Hybrid Neuronal Networks of the Entorhinal Cortex

    Get PDF
    How stable synchrony in neuronal networks is sustained in the presence of conduction delays is an open question. The Dynamic Clamp was used to measure phase resetting curves (PRCs) for entorhinal cortical cells, and then to construct networks of two such neurons. PRCs were in general Type I (all advances or all delays) or weakly type II with a small region at early phases with the opposite type of resetting. We used previously developed theoretical methods based on PRCs under the assumption of pulsatile coupling to predict the delays that synchronize these hybrid circuits. For excitatory coupling, synchrony was predicted and observed only with no delay and for delays greater than half a network period that cause each neuron to receive an input late in its firing cycle and almost immediately fire an action potential. Synchronization for these long delays was surprisingly tight and robust to the noise and heterogeneity inherent in a biological system. In contrast to excitatory coupling, inhibitory coupling led to antiphase for no delay, very short delays and delays close to a network period, but to near-synchrony for a wide range of relatively short delays. PRC-based methods show that conduction delays can stabilize synchrony in several ways, including neutralizing a discontinuity introduced by strong inhibition, favoring synchrony in the case of noisy bistability, and avoiding an initial destabilizing region of a weakly type II PRC. PRCs can identify optimal conduction delays favoring synchronization at a given frequency, and also predict robustness to noise and heterogeneity

    Adaptive and Phase Selective Spike Timing Dependent Plasticity in Synaptically Coupled Neuronal Oscillators

    Get PDF
    We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role of the latter in regulating synaptic transmission in neuronal circuits

    Design of artificial neural oscillatory circuits for the control of lamprey- and salamander-like locomotion using evolutionary algorithms

    Get PDF
    This dissertation investigates the evolutionary design of oscillatory artificial neural networks for the control of animal-like locomotion. It is inspired by the neural organ¬ isation of locomotor circuitries in vertebrates, and explores in particular the control of undulatory swimming and walking. The difficulty with designing such controllers is to find mechanisms which can transform commands concerning the direction and the speed of motion into the multiple rhythmic signals sent to the multiple actuators typically involved in animal-like locomotion. In vertebrates, such control mechanisms are provided by central pattern generators which are neural circuits capable of pro¬ ducing the patterns of oscillations necessary for locomotion without oscillatory input from higher control centres or from sensory feedback. This thesis explores the space of possible neural configurations for the control of undulatory locomotion, and addresses the problem of how biologically plausible neural controllers can be automatically generated.Evolutionary algorithms are used to design connectionist models of central pattern generators for the motion of simulated lampreys and salamanders. This work is inspired by Ekeberg's neuronal and mechanical simulation of the lamprey [Ekeberg 93]. The first part of the thesis consists of developing alternative neural controllers for a similar mechanical simulation. Using a genetic algorithm and an incremental approach, a variety of controllers other than the biological configuration are successfully developed which can control swimming with at least the same efficiency. The same method is then used to generate synaptic weights for a controller which has the observed biological connectivity in order to illustrate how the genetic algorithm could be used for developing neurobiological models. Biologically plausible controllers are evolved which better fit physiological observations than Ekeberg's hand-crafted model. Finally, in collaboration with Jerome Kodjabachian, swimming controllers are designed using a developmental encoding scheme, in which developmental programs are evolved which determine how neurons divide and get connected to each other on a two-dimensional substrate.The second part of this dissertation examines the control of salamander-like swimming and trotting. Salamanders swim like lampreys but, on the ground, they switch to a trotting gait in which the trunk performs a standing wave with the nodes at the girdles. Little is known about the locomotion circuitry of the salamander, but neurobiologists have hypothesised that it is based on a lamprey-like organisation. A mechanical sim¬ ulation of a salamander-like animat is developed, and neural controllers capable of exhibiting the two types of gaits are evolved. The controllers are made of two neural oscillators projecting to the limb motoneurons and to lamprey-like trunk circuitry. By modulating the tonic input applied to the networks, the type of gait, the speed and the direction of motion can be varied.By developing neural controllers for lamprey- and salamander-like locomotion, this thesis provides insights into the biological control of undulatory swimming and walking, and shows how evolutionary algorithms can be used for developing neurobiological models and for generating neural controllers for locomotion. Such a method could potentially be used for designing controllers for swimming or walking robots, for instance
    corecore