295,120 research outputs found

    Learning object behaviour models

    Get PDF
    The human visual system is capable of interpreting a remarkable variety of often subtle, learnt, characteristic behaviours. For instance we can determine the gender of a distant walking figure from their gait, interpret a facial expression as that of surprise, or identify suspicious behaviour in the movements of an individual within a car-park. Machine vision systems wishing to exploit such behavioural knowledge have been limited by the inaccuracies inherent in hand-crafted models and the absence of a unified framework for the perception of powerful behaviour models. The research described in this thesis attempts to address these limitations, using a statistical modelling approach to provide a framework in which detailed behavioural knowledge is acquired from the observation of long image sequences. The core of the behaviour modelling framework is an optimised sample-set representation of the probability density in a behaviour space defined by a novel temporal pattern formation strategy. This representation of behaviour is both concise and accurate and facilitates the recognition of actions or events and the assessment of behaviour typicality. The inclusion of generative capabilities is achieved via the addition of a learnt stochastic process model, thus facilitating the generation of predictions and realistic sample behaviours. Experimental results demonstrate the acquisition of behaviour models and suggest a variety of possible applications, including automated visual surveillance, object tracking, gesture recognition, and the generation of realistic object behaviours within animations, virtual worlds, and computer generated film sequences. The utility of the behaviour modelling framework is further extended through the modelling of object interaction. Two separate approaches are presented, and a technique is developed which, using learnt models of joint behaviour together with a stochastic tracking algorithm, can be used to equip a virtual object with the ability to interact in a natural way. Experimental results demonstrate the simulation of a plausible virtual partner during interaction between a user and the machine

    A vignette model for distributed teaching and learning

    Get PDF
    Computer software and telecommunication technologies are being assimilated into the education sector. At a slower pace, educational methodologies have been evolving and gradually adopted by educators. The widespread and rapid assimilation of technology may be outstripping the uptake of better pedagogical strategies. Non‐pedagogical development of content could lead to the development of legacy systems that constrain future developments. Problems have arisen with computer‐based learning (CBL) materials, such as the lack of uptake of monolithic programmes that cannot be easily changed to keep pace with natural progress or the different requirements of different teachers and institutions. Also, hypertext/hypermedia learning environments have limitations in that following predefined paths is no more interactive than page turning. These considerations require a flexible and dynamic approach for the benefit of both the teacher and student. Courses may be constructed from vignettes to meet a desired purpose and to avoid the problems of adoption for the reasons that programmes cannot easily be changed or are not designed to meet particular needs. Vignettes are small, first‐principle, first‐person, heuristic activities (which are mimetic) from which courses can be constructed Vignettes use an object‐orientated approach to the development of computer‐based learning materials. Vignettes are objects that can be manipulated via a property sheet, which enables changing the object's inherent character or behaviour. A vignette object can interact with other vignette objects to create more complex educational interactions or models. The vignette approach leads to a development concept that is horizontally distributed across disciplines rather than vertically limited to single subjects

    Goal-directed cross-system interactions in brain and deep learning networks

    Get PDF
    Deep neural networks (DNN) have recently emerged as promising models for the mammalian ventral visual stream. However, how ventral stream adapts to various goal-directed influences and coordinates with higher-level brain regions during learning remain poorly understood. By incorporating top-down influences involving attentional cues, linguistic labels and novel category learning into DNN models, the thesis offers an explanation for how the tasks we do shape representations across levels in models and related brain regions including ventral visual stream, HPC and ventromedial prefrontal cortex (vmPFC) via a theoretical modelling approach. The thesis include three main contributions. In the first contribution, I developed a goal-directed attention mechanism which extends general-purpose DNN with the ability to reconfigure itself to better suit the current task goal, much like PFC modulates activity along the ventral stream. In the second contribution, I uncovered how linguistic labelling shapes semantic representation by amending existing DNN to both predict the meaning and the categorical label of an object. Supported by simulation results involving fine-grained and coarse-grained labels, I concluded that differences in label use, whether across languages or levels of expertise, manifest in differences in the semantic representations that support label discrimination. In the third contribution, I aimed to better understand cross-brain mechanisms in a novel learning task by combining insights on labelling and attention obtained from preceding efforts. Integrating DNN with a novel clustering model built off from SUSTAIN, the proposed account captures human category learning behaviour and the underlying neural mechanisms across multiple interacting brain areas involving HPC, vmPFC and the ventral visual stream. By extending models of the ventral stream to incorporate goal-directed cross-system coordination, I hope the thesis can inform understanding of the neurobiology supporting object recognition and category learning which in turn help us advance designs of deep learning models

    Identifying Rare and Subtle Behaviors: A Weakly Supervised Joint Topic Model

    Get PDF

    Designing a programming-based approach for modelling scientific phenomena

    Get PDF
    We describe an iteratively designed sequence of activities involving the modelling of 1- dimensional collisions between moving objects based on programming in ToonTalk. Students aged 13-14 in two settings (London and Cyprus) investigated a number of collision situations, classified into six classes based on the relative velocities and masses of the colliding objects. We describe iterations of the system in which students engaged in a repeating cycle of activity for each collision class: prediction of object behaviour from given collision conditions, observation of a relevant video clip, building a model to represent the phenomena, testing, validating and refining their model, and publishing it – together with comments – on our web-based collaboration system, WebReports. Students were encouraged to consider the limitations of their current model, with the aim that they would eventually appreciate the benefit of constructing a general model that would work for all collision classes, rather than a different model for each class. We describe how our intention to engage students with the underlying concepts of conservation, closed systems and system states was instantiated in the activity design, and how the modelling activities afforded an alternative representational framework to traditional algebraic description

    The future of technology enhanced active learning – a roadmap

    Get PDF
    The notion of active learning refers to the active involvement of learner in the learning process, capturing ideas of learning-by-doing and the fact that active participation and knowledge construction leads to deeper and more sustained learning. Interactivity, in particular learnercontent interaction, is a central aspect of technology-enhanced active learning. In this roadmap, the pedagogical background is discussed, the essential dimensions of technology-enhanced active learning systems are outlined and the factors that are expected to influence these systems currently and in the future are identified. A central aim is to address this promising field from a best practices perspective, clarifying central issues and formulating an agenda for future developments in the form of a roadmap
    corecore