138,616 research outputs found

    Learning non-maximum suppression

    Full text link
    Object detectors have hugely profited from moving towards an end-to-end learning paradigm: proposals, features, and the classifier becoming one neural network improved results two-fold on general object detection. One indispensable component is non-maximum suppression (NMS), a post-processing algorithm responsible for merging all detections that belong to the same object. The de facto standard NMS algorithm is still fully hand-crafted, suspiciously simple, and -- being based on greedy clustering with a fixed distance threshold -- forces a trade-off between recall and precision. We propose a new network architecture designed to perform NMS, using only boxes and their score. We report experiments for person detection on PETS and for general object categories on the COCO dataset. Our approach shows promise providing improved localization and occlusion handling.Comment: Added "Supplementary material" titl

    Learning Detection with Diverse Proposals

    Full text link
    To predict a set of diverse and informative proposals with enriched representations, this paper introduces a differentiable Determinantal Point Process (DPP) layer that is able to augment the object detection architectures. Most modern object detection architectures, such as Faster R-CNN, learn to localize objects by minimizing deviations from the ground-truth but ignore correlation between multiple proposals and object categories. Non-Maximum Suppression (NMS) as a widely used proposal pruning scheme ignores label- and instance-level relations between object candidates resulting in multi-labeled detections. In the multi-class case, NMS selects boxes with the largest prediction scores ignoring the semantic relation between categories of potential election. In contrast, our trainable DPP layer, allowing for Learning Detection with Diverse Proposals (LDDP), considers both label-level contextual information and spatial layout relationships between proposals without increasing the number of parameters of the network, and thus improves location and category specifications of final detected bounding boxes substantially during both training and inference schemes. Furthermore, we show that LDDP keeps it superiority over Faster R-CNN even if the number of proposals generated by LDPP is only ~30% as many as those for Faster R-CNN.Comment: Accepted to CVPR 201
    • …
    corecore