4,479 research outputs found

    Propagation Kernels

    Full text link
    We introduce propagation kernels, a general graph-kernel framework for efficiently measuring the similarity of structured data. Propagation kernels are based on monitoring how information spreads through a set of given graphs. They leverage early-stage distributions from propagation schemes such as random walks to capture structural information encoded in node labels, attributes, and edge information. This has two benefits. First, off-the-shelf propagation schemes can be used to naturally construct kernels for many graph types, including labeled, partially labeled, unlabeled, directed, and attributed graphs. Second, by leveraging existing efficient and informative propagation schemes, propagation kernels can be considerably faster than state-of-the-art approaches without sacrificing predictive performance. We will also show that if the graphs at hand have a regular structure, for instance when modeling image or video data, one can exploit this regularity to scale the kernel computation to large databases of graphs with thousands of nodes. We support our contributions by exhaustive experiments on a number of real-world graphs from a variety of application domains

    Reconstruction of biological networks by supervised machine learning approaches

    Full text link
    We review a recent trend in computational systems biology which aims at using pattern recognition algorithms to infer the structure of large-scale biological networks from heterogeneous genomic data. We present several strategies that have been proposed and that lead to different pattern recognition problems and algorithms. The strenght of these approaches is illustrated on the reconstruction of metabolic, protein-protein and regulatory networks of model organisms. In all cases, state-of-the-art performance is reported

    Graph Kernels via Functional Embedding

    Full text link
    We propose a representation of graph as a functional object derived from the power iteration of the underlying adjacency matrix. The proposed functional representation is a graph invariant, i.e., the functional remains unchanged under any reordering of the vertices. This property eliminates the difficulty of handling exponentially many isomorphic forms. Bhattacharyya kernel constructed between these functionals significantly outperforms the state-of-the-art graph kernels on 3 out of the 4 standard benchmark graph classification datasets, demonstrating the superiority of our approach. The proposed methodology is simple and runs in time linear in the number of edges, which makes our kernel more efficient and scalable compared to many widely adopted graph kernels with running time cubic in the number of vertices

    A simple yet effective baseline for non-attributed graph classification

    Full text link
    Graphs are complex objects that do not lend themselves easily to typical learning tasks. Recently, a range of approaches based on graph kernels or graph neural networks have been developed for graph classification and for representation learning on graphs in general. As the developed methodologies become more sophisticated, it is important to understand which components of the increasingly complex methods are necessary or most effective. As a first step, we develop a simple yet meaningful graph representation, and explore its effectiveness in graph classification. We test our baseline representation for the graph classification task on a range of graph datasets. Interestingly, this simple representation achieves similar performance as the state-of-the-art graph kernels and graph neural networks for non-attributed graph classification. Its performance on classifying attributed graphs is slightly weaker as it does not incorporate attributes. However, given its simplicity and efficiency, we believe that it still serves as an effective baseline for attributed graph classification. Our graph representation is efficient (linear-time) to compute. We also provide a simple connection with the graph neural networks. Note that these observations are only for the task of graph classification while existing methods are often designed for a broader scope including node embedding and link prediction. The results are also likely biased due to the limited amount of benchmark datasets available. Nevertheless, the good performance of our simple baseline calls for the development of new, more comprehensive benchmark datasets so as to better evaluate and analyze different graph learning methods. Furthermore, given the computational efficiency of our graph summary, we believe that it is a good candidate as a baseline method for future graph classification (or even other graph learning) studies.Comment: 13 pages. Shorter version appears at 2019 ICLR Workshop: Representation Learning on Graphs and Manifolds. arXiv admin note: text overlap with arXiv:1810.00826 by other author

    Learning with Graphs using Kernels from Propagated Information

    Get PDF
    Traditional machine learning approaches are designed to learn from independent vector-valued data points. The assumption that instances are independent, however, is not always true. On the contrary, there are numerous domains where data points are cross-linked, for example social networks, where persons are linked by friendship relations. These relations among data points make traditional machine learning diffcult and often insuffcient. Furthermore, data points themselves can have complex structure, for example molecules or proteins constructed from various bindings of different atoms. Networked and structured data are naturally represented by graphs, and for learning we aimto exploit their structure to improve upon non-graph-based methods. However, graphs encountered in real-world applications often come with rich additional information. This naturally implies many challenges for representation and learning: node information is likely to be incomplete leading to partially labeled graphs, information can be aggregated from multiple sources and can therefore be uncertain, or additional information on nodes and edges can be derived from complex sensor measurements, thus being naturally continuous. Although learning with graphs is an active research area, learning with structured data, substantially modeling structural similarities of graphs, mostly assumes fully labeled graphs of reasonable sizes with discrete and certain node and edge information, and learning with networked data, naturally dealing with missing information and huge graphs, mostly assumes homophily and forgets about structural similarity. To close these gaps, we present a novel paradigm for learning with graphs, that exploits the intermediate results of iterative information propagation schemes on graphs. Originally developed for within-network relational and semi-supervised learning, these propagation schemes have two desirable properties: they capture structural information and they can naturally adapt to the aforementioned issues of real-world graph data. Additionally, information propagation can be efficiently realized by random walks leading to fast, flexible, and scalable feature and kernel computations. Further, by considering intermediate random walk distributions, we can model structural similarity for learning with structured and networked data. We develop several approaches based on this paradigm. In particular, we introduce propagation kernels for learning on the graph level and coinciding walk kernels and Markov logic sets for learning on the node level. Finally, we present two application domains where kernels from propagated information successfully tackle real-world problems

    kLog: A Language for Logical and Relational Learning with Kernels

    Full text link
    We introduce kLog, a novel approach to statistical relational learning. Unlike standard approaches, kLog does not represent a probability distribution directly. It is rather a language to perform kernel-based learning on expressive logical and relational representations. kLog allows users to specify learning problems declaratively. It builds on simple but powerful concepts: learning from interpretations, entity/relationship data modeling, logic programming, and deductive databases. Access by the kernel to the rich representation is mediated by a technique we call graphicalization: the relational representation is first transformed into a graph --- in particular, a grounded entity/relationship diagram. Subsequently, a choice of graph kernel defines the feature space. kLog supports mixed numerical and symbolic data, as well as background knowledge in the form of Prolog or Datalog programs as in inductive logic programming systems. The kLog framework can be applied to tackle the same range of tasks that has made statistical relational learning so popular, including classification, regression, multitask learning, and collective classification. We also report about empirical comparisons, showing that kLog can be either more accurate, or much faster at the same level of accuracy, than Tilde and Alchemy. kLog is GPLv3 licensed and is available at http://klog.dinfo.unifi.it along with tutorials

    A kernel-based framework for learning graded relations from data

    Get PDF
    Driven by a large number of potential applications in areas like bioinformatics, information retrieval and social network analysis, the problem setting of inferring relations between pairs of data objects has recently been investigated quite intensively in the machine learning community. To this end, current approaches typically consider datasets containing crisp relations, so that standard classification methods can be adopted. However, relations between objects like similarities and preferences are often expressed in a graded manner in real-world applications. A general kernel-based framework for learning relations from data is introduced here. It extends existing approaches because both crisp and graded relations are considered, and it unifies existing approaches because different types of graded relations can be modeled, including symmetric and reciprocal relations. This framework establishes important links between recent developments in fuzzy set theory and machine learning. Its usefulness is demonstrated through various experiments on synthetic and real-world data.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    • 

    corecore