65,445 research outputs found

    Learning Mid-Level Representations for Visual Recognition

    Get PDF
    The objective of this thesis is to enhance visual recognition for objects and scenes through the development of novel mid-level representations and appendent learning algorithms. In particular, this work is focusing on category level recognition which is still a very challenging and mainly unsolved task. One crucial component in visual recognition systems is the representation of objects and scenes. However, depending on the representation, suitable learning strategies need to be developed that make it possible to learn new categories automatically from training data. Therefore, the aim of this thesis is to extend low-level representations by mid-level representations and to develop suitable learning mechanisms. A popular kind of mid-level representations are higher order statistics such as self-similarity and co-occurrence statistics. While these descriptors are satisfying the demand for higher-level object representations, they are also exhibiting very large and ever increasing dimensionality. In this thesis a new object representation, based on curvature self-similarity, is suggested that goes beyond the currently popular approximation of objects using straight lines. However, like all descriptors using second order statistics, it also exhibits a high dimensionality. Although improving discriminability, the high dimensionality becomes a critical issue due to lack of generalization ability and curse of dimensionality. Given only a limited amount of training data, even sophisticated learning algorithms such as the popular kernel methods are not able to suppress noisy or superfluous dimensions of such high-dimensional data. Consequently, there is a natural need for feature selection when using present-day informative features and, particularly, curvature self-similarity. We therefore suggest an embedded feature selection method for support vector machines that reduces complexity and improves generalization capability of object models. The proposed curvature self-similarity representation is successfully integrated together with the embedded feature selection in a widely used state-of-the-art object detection framework. The influence of higher order statistics for category level object recognition, is further investigated by learning co-occurrences between foreground and background, to reduce the number of false detections. While the suggested curvature self-similarity descriptor is improving the model for more detailed description of the foreground, higher order statistics are now shown to be also suitable for explicitly modeling the background. This is of particular use for the popular chamfer matching technique, since it is prone to accidental matches in dense clutter. As clutter only interferes with the foreground model contour, we learn where to place the background contours with respect to the foreground object boundary. The co-occurrence of background contours is integrated into a max-margin framework. Thus the suggested approach combines the advantages of accurately detecting object parts via chamfer matching and the robustness of max-margin learning. While chamfer matching is very efficient technique for object detection, parts are only detected based on a simple distance measure. Contrary to that, mid-level parts and patches are explicitly trained to distinguish true positives in the foreground from false positives in the background. Due to the independence of mid-level patches and parts it is possible to train a large number of instance specific part classifiers. This is contrary to the current most powerful discriminative approaches that are typically only feasible for a small number of parts, as they are modeling the spatial dependencies between them. Due to their number, we cannot directly train a powerful classifier to combine all parts. Instead, parts are randomly grouped into fewer, overlapping compositions that are trained using a maximum-margin approach. In contrast to the common rationale of compositional approaches, we do not aim for semantically meaningful ensembles. Rather we seek randomized compositions that are discriminative and generalize over all instances of a category. Compositions are all combined by a non-linear decision function which is completing the powerful hierarchy of discriminative classifiers. In summary, this thesis is improving visual recognition of objects and scenes, by developing novel mid-level representations on top of different kinds of low-level representations. Furthermore, it investigates in the development of suitable learning algorithms, to deal with the new challenges that are arising form the novel object representations presented in this work

    Mid-level Representation for Visual Recognition

    Full text link
    Visual Recognition is one of the fundamental challenges in AI, where the goal is to understand the semantics of visual data. Employing mid-level representation, in particular, shifted the paradigm in visual recognition. The mid-level image/video representation involves discovering and training a set of mid-level visual patterns (e.g., parts and attributes) and represent a given image/video utilizing them. The mid-level patterns can be extracted from images and videos using the motion and appearance information of visual phenomenas. This thesis targets employing mid-level representations for different high-level visual recognition tasks, namely (i)image understanding and (ii)video understanding. In the case of image understanding, we focus on object detection/recognition task. We investigate on discovering and learning a set of mid-level patches to be used for representing the images of an object category. We specifically employ the discriminative patches in a subcategory-aware webly-supervised fashion. We, additionally, study the outcomes provided by employing the subcategory-based models for undoing dataset bias

    Fusion of Learned Multi-Modal Representations and Dense Trajectories for Emotional Analysis in Videos

    Get PDF
    When designing a video affective content analysis algorithm, one of the most important steps is the selection of discriminative features for the effective representation of video segments. The majority of existing affective content analysis methods either use low-level audio-visual features or generate handcrafted higher level representations based on these low-level features. We propose in this work to use deep learning methods, in particular convolutional neural networks (CNNs), in order to automatically learn and extract mid-level representations from raw data. To this end, we exploit the audio and visual modality of videos by employing Mel-Frequency Cepstral Coefficients (MFCC) and color values in the HSV color space. We also incorporate dense trajectory based motion features in order to further enhance the performance of the analysis. By means of multi-class support vector machines (SVMs) and fusion mechanisms, music video clips are classified into one of four affective categories representing the four quadrants of the Valence-Arousal (VA) space. Results obtained on a subset of the DEAP dataset show (1) that higher level representations perform better than low-level features, and (2) that incorporating motion information leads to a notable performance gain, independently from the chosen representation

    Supervised mid-level features for word image representation

    Full text link
    This paper addresses the problem of learning word image representations: given the cropped image of a word, we are interested in finding a descriptive, robust, and compact fixed-length representation. Machine learning techniques can then be supplied with these representations to produce models useful for word retrieval or recognition tasks. Although many works have focused on the machine learning aspect once a global representation has been produced, little work has been devoted to the construction of those base image representations: most works use standard coding and aggregation techniques directly on top of standard computer vision features such as SIFT or HOG. We propose to learn local mid-level features suitable for building word image representations. These features are learnt by leveraging character bounding box annotations on a small set of training images. However, contrary to other approaches that use character bounding box information, our approach does not rely on detecting the individual characters explicitly at testing time. Our local mid-level features can then be aggregated to produce a global word image signature. When pairing these features with the recent word attributes framework of Almaz\'an et al., we obtain results comparable with or better than the state-of-the-art on matching and recognition tasks using global descriptors of only 96 dimensions

    Multi-Level Recurrent Residual Networks for Action Recognition

    Full text link
    Most existing Convolutional Neural Networks(CNNs) used for action recognition are either difficult to optimize or underuse crucial temporal information. Inspired by the fact that the recurrent model consistently makes breakthroughs in the task related to sequence, we propose a novel Multi-Level Recurrent Residual Networks(MRRN) which incorporates three recognition streams. Each stream consists of a Residual Networks(ResNets) and a recurrent model. The proposed model captures spatiotemporal information by employing both alternative ResNets to learn spatial representations from static frames and stacked Simple Recurrent Units(SRUs) to model temporal dynamics. Three distinct-level streams learned low-, mid-, high-level representations independently are fused by computing a weighted average of their softmax scores to obtain the complementary representations of the video. Unlike previous models which boost performance at the cost of time complexity and space complexity, our models have a lower complexity by employing shortcut connection and are trained end-to-end with greater efficiency. MRRN displays significant performance improvements compared to CNN-RNN framework baselines and obtains comparable performance with the state-of-the-art, achieving 51.3% on HMDB-51 dataset and 81.9% on UCF-101 dataset although no additional data

    Satellite Image-based Localization via Learned Embeddings

    Full text link
    We propose a vision-based method that localizes a ground vehicle using publicly available satellite imagery as the only prior knowledge of the environment. Our approach takes as input a sequence of ground-level images acquired by the vehicle as it navigates, and outputs an estimate of the vehicle's pose relative to a georeferenced satellite image. We overcome the significant viewpoint and appearance variations between the images through a neural multi-view model that learns location-discriminative embeddings in which ground-level images are matched with their corresponding satellite view of the scene. We use this learned function as an observation model in a filtering framework to maintain a distribution over the vehicle's pose. We evaluate our method on different benchmark datasets and demonstrate its ability localize ground-level images in environments novel relative to training, despite the challenges of significant viewpoint and appearance variations.Comment: To be published in IEEE International Conference on Robotics and Automation (ICRA), 201

    Mid-Level Visual Representations Improve Generalization and Sample Efficiency for Learning Visuomotor Policies

    Full text link
    How much does having visual priors about the world (e.g. the fact that the world is 3D) assist in learning to perform downstream motor tasks (e.g. delivering a package)? We study this question by integrating a generic perceptual skill set (e.g. a distance estimator, an edge detector, etc.) within a reinforcement learning framework--see Figure 1. This skill set (hereafter mid-level perception) provides the policy with a more processed state of the world compared to raw images. We find that using a mid-level perception confers significant advantages over training end-to-end from scratch (i.e. not leveraging priors) in navigation-oriented tasks. Agents are able to generalize to situations where the from-scratch approach fails and training becomes significantly more sample efficient. However, we show that realizing these gains requires careful selection of the mid-level perceptual skills. Therefore, we refine our findings into an efficient max-coverage feature set that can be adopted in lieu of raw images. We perform our study in completely separate buildings for training and testing and compare against visually blind baseline policies and state-of-the-art feature learning methods.Comment: See project website, demos, and code at http://perceptual.acto

    Hybrid CNN and Dictionary-Based Models for Scene Recognition and Domain Adaptation

    Full text link
    Convolutional neural network (CNN) has achieved state-of-the-art performance in many different visual tasks. Learned from a large-scale training dataset, CNN features are much more discriminative and accurate than the hand-crafted features. Moreover, CNN features are also transferable among different domains. On the other hand, traditional dictionarybased features (such as BoW and SPM) contain much more local discriminative and structural information, which is implicitly embedded in the images. To further improve the performance, in this paper, we propose to combine CNN with dictionarybased models for scene recognition and visual domain adaptation. Specifically, based on the well-tuned CNN models (e.g., AlexNet and VGG Net), two dictionary-based representations are further constructed, namely mid-level local representation (MLR) and convolutional Fisher vector representation (CFV). In MLR, an efficient two-stage clustering method, i.e., weighted spatial and feature space spectral clustering on the parts of a single image followed by clustering all representative parts of all images, is used to generate a class-mixture or a classspecific part dictionary. After that, the part dictionary is used to operate with the multi-scale image inputs for generating midlevel representation. In CFV, a multi-scale and scale-proportional GMM training strategy is utilized to generate Fisher vectors based on the last convolutional layer of CNN. By integrating the complementary information of MLR, CFV and the CNN features of the fully connected layer, the state-of-the-art performance can be achieved on scene recognition and domain adaptation problems. An interested finding is that our proposed hybrid representation (from VGG net trained on ImageNet) is also complementary with GoogLeNet and/or VGG-11 (trained on Place205) greatly.Comment: Accepted by TCSVT on Sep.201

    Scenarios: A New Representation for Complex Scene Understanding

    Full text link
    The ability for computational agents to reason about the high-level content of real world scene images is important for many applications. Existing attempts at addressing the problem of complex scene understanding lack representational power, efficiency, and the ability to create robust meta-knowledge about scenes. In this paper, we introduce scenarios as a new way of representing scenes. The scenario is a simple, low-dimensional, data-driven representation consisting of sets of frequently co-occurring objects and is useful for a wide range of scene understanding tasks. We learn scenarios from data using a novel matrix factorization method which we integrate into a new neural network architecture, the ScenarioNet. Using ScenarioNet, we can recover semantic information about real world scene images at three levels of granularity: 1) scene categories, 2) scenarios, and 3) objects. Training a single ScenarioNet model enables us to perform scene classification, scenario recognition, multi-object recognition, content-based scene image retrieval, and content-based image comparison. In addition to solving many tasks in a single, unified framework, ScenarioNet is more computationally efficient than other CNNs because it requires significantly fewer parameters while achieving similar performance on benchmark tasks and is more interpretable because it produces explanations when making decisions. We validate the utility of scenarios and ScenarioNet on a diverse set of scene understanding tasks on several benchmark datasets

    Mid-level Elements for Object Detection

    Full text link
    Building on the success of recent discriminative mid-level elements, we propose a surprisingly simple approach for object detection which performs comparable to the current state-of-the-art approaches on PASCAL VOC comp-3 detection challenge (no external data). Through extensive experiments and ablation analysis, we show how our approach effectively improves upon the HOG-based pipelines by adding an intermediate mid-level representation for the task of object detection. This representation is easily interpretable and allows us to visualize what our object detector "sees". We also discuss the insights our approach shares with CNN-based methods, such as sharing representation between categories helps
    • …
    corecore