40 research outputs found

    Real-time intrafraction motion monitoring in external beam radiotherapy

    Get PDF
    © 2019 Institute of Physics and Engineering in Medicine. Radiotherapy (RT) aims to deliver a spatially conformal dose of radiation to tumours while maximizing the dose sparing to healthy tissues. However, the internal patient anatomy is constantly moving due to respiratory, cardiac, gastrointestinal and urinary activity. The long term goal of the RT community to 'see what we treat, as we treat' and to act on this information instantaneously has resulted in rapid technological innovation. Specialized treatment machines, such as robotic or gimbal-steered linear accelerators (linac) with in-room imaging suites, have been developed specifically for real-time treatment adaptation. Additional equipment, such as stereoscopic kilovoltage (kV) imaging, ultrasound transducers and electromagnetic transponders, has been developed for intrafraction motion monitoring on conventional linacs. Magnetic resonance imaging (MRI) has been integrated with cobalt treatment units and more recently with linacs. In addition to hardware innovation, software development has played a substantial role in the development of motion monitoring methods based on respiratory motion surrogates and planar kV or Megavoltage (MV) imaging that is available on standard equipped linacs. In this paper, we review and compare the different intrafraction motion monitoring methods proposed in the literature and demonstrated in real-time on clinical data as well as their possible future developments. We then discuss general considerations on validation and quality assurance for clinical implementation. Besides photon RT, particle therapy is increasingly used to treat moving targets. However, transferring motion monitoring technologies from linacs to particle beam lines presents substantial challenges. Lessons learned from the implementation of real-time intrafraction monitoring for photon RT will be used as a basis to discuss the implementation of these methods for particle RT

    Artificial Intelligence-based Motion Tracking in Cancer Radiotherapy: A Review

    Full text link
    Radiotherapy aims to deliver a prescribed dose to the tumor while sparing neighboring organs at risk (OARs). Increasingly complex treatment techniques such as volumetric modulated arc therapy (VMAT), stereotactic radiosurgery (SRS), stereotactic body radiotherapy (SBRT), and proton therapy have been developed to deliver doses more precisely to the target. While such technologies have improved dose delivery, the implementation of intra-fraction motion management to verify tumor position at the time of treatment has become increasingly relevant. Recently, artificial intelligence (AI) has demonstrated great potential for real-time tracking of tumors during treatment. However, AI-based motion management faces several challenges including bias in training data, poor transparency, difficult data collection, complex workflows and quality assurance, and limited sample sizes. This review serves to present the AI algorithms used for chest, abdomen, and pelvic tumor motion management/tracking for radiotherapy and provide a literature summary on the topic. We will also discuss the limitations of these algorithms and propose potential improvements.Comment: 36 pages, 5 Figures, 4 Table

    Extracting respiratory signals from thoracic cone beam CT projections

    Full text link
    Patient respiratory signal associated with the cone beam CT (CBCT) projections is important for lung cancer radiotherapy. In contrast to monitoring an external surrogate of respiration, such signal can be extracted directly from the CBCT projections. In this paper, we propose a novel local principle component analysis (LPCA) method to extract the respiratory signal by distinguishing the respiration motion-induced content change from the gantry rotation-induced content change in the CBCT projections. The LPCA method is evaluated by comparing with three state-of-the-art projection-based methods, namely, the Amsterdam Shroud (AS) method, the intensity analysis (IA) method, and the Fourier-transform based phase analysis (FT-p) method. The clinical CBCT projection data of eight patients, acquired under various clinical scenarios, were used to investigate the performance of each method. We found that the proposed LPCA method has demonstrated the best overall performance for cases tested and thus is a promising technique for extracting respiratory signal. We also identified the applicability of each existing method.Comment: 21 pages, 11 figures, submitted to Phys. Med. Bio

    Novel real-time tumor-contouring method using deep learning to prevent mistracking in X-ray fluoroscopy

    Get PDF
    Robustness to obstacles is the most important factor necessary to achieve accurate tumor tracking without fiducial markers. Some high-density structures, such as bone, are enhanced on X-ray fluoroscopic images, which cause tumor mistracking. Tumor tracking should be performed by controlling “importance recognition”: the understanding that soft-tissue is an important tracking feature and bone structure is unimportant. We propose a new real-time tumor-contouring method that uses deep learning with importance recognition control. The novelty of the proposed method is the combination of the devised random overlay method and supervised deep learning to induce the recognition of structures in tumor contouring as important or unimportant. This method can be used for tumor contouring because it uses deep learning to perform image segmentation. Our results from a simulated fluoroscopy model showed accurate tracking of a low-visibility tumor with an error of approximately 1 mm, even if enhanced bone structure acted as an obstacle. A high similarity of approximately 0.95 on the Jaccard index was observed between the segmented and ground truth tumor regions. A short processing time of 25 ms was achieved. The results of this simulated fluoroscopy model support the feasibility of robust real-time tumor contouring with fluoroscopy. Further studies using clinical fluoroscopy are highly anticipated

    Clinical practice vs. state-of-the-art research and future visions:Report on the 4D treatment planning workshop for particle therapy - Edition 2018 and 2019

    Get PDF
    The 4D Treatment Planning Workshop for Particle Therapy, a workshop dedicated to the treatment of moving targets with scanned particle beams, started in 2009 and since then has been organized annually. The mission of the workshop is to create an informal ground for clinical medical physicists, medical physics researchers and medical doctors interested in the development of the 4D technology, protocols and their translation into clinical practice. The 10th and 11th editions of the workshop took place in Sapporo, Japan in 2018 and Krakow, Poland in 2019, respectively. This review report from the Sapporo and Krakow workshops is structured in two parts, according to the workshop programs. The first part comprises clinicians and physicists review of the status of 4D clinical implementations. Corresponding talks were given by speakers from five centers around the world: Maastro Clinic (The Netherlands), University Medical Center Groningen (The Netherlands), MD Anderson Cancer Center (United States), University of Pennsylvania (United States) and The Proton Beam Therapy Center of Hokkaido University Hospital (Japan). The second part is dedicated to novelties in 4D research, i.e. motion modelling, artificial intelligence and new technologies which are currently being investigated in the radiotherapy field

    マーカーレス腫瘍位置決めを目的とした深層学習に基づく患者固有標的輪郭予測モデルの開発

    Get PDF
    京都大学新制・課程博士博士(人間健康科学)甲第24542号人健博第113号新制||人健||8(附属図書館)京都大学大学院医学研究科人間健康科学系専攻(主査)教授 中尾 恵, 教授 杉本 直三, 教授 黒田 知宏学位規則第4条第1項該当Doctor of Human Health SciencesKyoto UniversityDFA

    Calculation of Inter- and Intra-Fraction Motion Errors at External Radiotherapy Using a Markerless Strategy Based on Image Registration Combined with Correlation Model

    Get PDF
    Introduction: A new method based on image registration technique and an intelligent correlation model to calculate. The present study aimed to propose inter- and intra-fraction motion errors in order to address the limitations of conventional Patient positioning methods. Material and Methods: The configuration of the markerless method was accomplished by using four-dimensional computed tomography (4DCT) datasets. Firstly, the MeVisLab software package was used to extract a three-dimensional (3D) surface model of the patient and determine the tumor location. Then, the patient-specific 3D surface model which also included the breathing phases was imported into the MATLAB software package in order to define several control points on the thorax region as virtual external markers. Finally, based on the correlation of breathing signals/patient position with breathing signals/tumor coordinate, an adaptive neuro fuzzy inference system was proposed to both verify and align the inter- and intra-fraction motion errors in radiotherapy, if needed. In order to validate the proposed method, the 4DCT data acquired from four real patients was considered. Results: Final results revealed that our hybrid configuration method was capable of aligning patient setup with lower uncertainties, compared to other available methods. In addition, the 3D root-mean-square error has been reduced from 5.26 to 1.5 mm for all patients. Conclusion: In this study, a markerless method based on the image registration technique in combination with a correlation model was proposed to address the limitations of the available methods, including dependence on operator’s attention, use of passive markers, and rigid-only constraint for patient setup

    Management of Motion and Anatomical Variations in Charged Particle Therapy:Past, Present, and Into the Future

    Get PDF
    The major aim of radiation therapy is to provide curative or palliative treatment to cancerous malignancies while minimizing damage to healthy tissues. Charged particle radiotherapy utilizing carbon ions or protons is uniquely suited for this task due to its ability to achieve highly conformal dose distributions around the tumor volume. For these treatment modalities, uncertainties in the localization of patient anatomy due to inter- and intra-fractional motion present a heightened risk of undesired dose delivery. A diverse range of mitigation strategies have been developed and clinically implemented in various disease sites to monitor and correct for patient motion, but much work remains. This review provides an overview of current clinical practices for inter and intra-fractional motion management in charged particle therapy, including motion control, current imaging and motion tracking modalities, as well as treatment planning and delivery techniques. We also cover progress to date on emerging technologies including particle-based radiography imaging, novel treatment delivery methods such as tumor tracking and FLASH, and artificial intelligence and discuss their potential impact towards improving or increasing the challenge of motion mitigation in charged particle therapy

    Visually guided inspiration breath-hold facilitated with nasal high flow therapy in locally advanced lung cancer

    Get PDF
    Background and purpose Reducing breathing motion in radiotherapy (RT) is an attractive strategy to reduce margins and better spare normal tissues. The objective of this prospective study (NCT03729661) was to investigate the feasibility of irradiation of non-small cell lung cancer (NSCLC) with visually guided moderate deep inspiration breath-hold (IBH) using nasal high-flow therapy (NHFT). Material and methods Locally advanced NSCLC patients undergoing photon RT were given NHFT with heated humidified air (flow: 40 L/min with 80% oxygen) through a nasal cannula. IBH was monitored by optical surface tracking (OST) with visual feedback. At a training session, patients had to hold their breath as long as possible, without and with NHFT. For the daily cone beam CT (CBCT) and RT treatment in IBH, patients were instructed to keep their BH as long as it felt comfortable. OST was used to analyze stability and reproducibility of the BH, and CBCT to analyze daily tumor position. Subjective tolerance was measured with a questionnaire at 3 time points. Results Of 10 included patients, 9 were treated with RT. Seven (78%) completed the treatment with NHFT as planned. At the training session, the mean BH length without NHFT was 39 s (range 15-86 s), and with NHFT 78 s (range 29-223 s) (p = .005). NHFT prolonged the BH duration by a mean factor of 2.1 (range 1.1-3.9s). The mean overall stability and reproducibility were within 1 mm. Subjective tolerance was very good with the majority of patients having no or minor discomfort caused by the devices. The mean inter-fraction tumor position variability was 1.8 mm (-1.1-8.1 mm;SD 2.4 mm). Conclusion NHFT for RT treatment of NSCLC in BH is feasible, well tolerated and significantly increases the breath-hold duration. Visually guided BH with OST is stable and reproducible. We therefore consider this an attractive patient-friendly approach to treat lung cancer patients with RT in BH
    corecore